One of the utmost frequently emerging neurodegenerative diseases, Parkinson’s disease (PD) must be comprehended through the forfeit of dopamine (DA)-generating nerve cells in the substantia nigra pars compacta (SN-PC). The etiology and pathogenesis underlying the emergence of PD is still obscure. However, expanding corroboration encourages the involvement of genetic and environmental factors in the etiology of PD. The destruction of numerous cellular components, namely oxidative stress, ubiquitin-proteasome system (UPS) dysfunction, autophagy-lysosome system dysfunction, neuroinflammation and programmed cell death, and mitochondrial dysfunction partake in the pathogenesis of PD. Present-day pharmacotherapy can alleviate the manifestations, but no therapy has been demonstrated to cease disease progression. Peroxisome proliferator-activated receptors (PPARs) are ligand-directed transcription factors pertaining to the class of nuclear hormone receptors (NHR), and are implicated in the modulation of mitochondrial operation, inflammation, wound healing, redox equilibrium, and metabolism of blood sugar and lipids. Numerous PPAR agonists have been recognized to safeguard nerve cells from oxidative destruction, inflammation, and programmed cell death in PD and other neurodegenerative diseases. Additionally, various investigations suggest that regular administration of PPAR-activating non-steroidal anti-inflammatory drugs (NSAIDs) (ibuprofen, indomethacin), and leukotriene receptor antagonists (montelukast) were related to the de-escalated evolution of neurodegenerative diseases. The present review elucidates the emerging evidence enlightening the neuroprotective outcomes of PPAR agonists in in vivo and in vitro models experiencing PD. Existing articles up to the present were procured through PubMed, MEDLINE, etc., utilizing specific keywords spotlighted in this review. Furthermore, the authors aim to provide insight into the neuroprotective actions of PPAR agonists by outlining the pharmacological mechanism. As a conclusion, PPAR agonists exhibit neuroprotection through modulating the expression of a group of genes implicated in cellular survival pathways, and may be a propitious target in the therapy of incapacitating neurodegenerative diseases like PD.
Background: The prevalence and scope of dermatological illness differ from region to region. Based upon type and severity, the conditions may vary from superficial to deep systemic skin infections. Niacinamide, an amide analog of vitamin B3 which was conventionally utilized as a food supplement, is now explored for the management of skin disorders. Being a powerhouse on its own, it is not stored inside the body naturally and has to be acquired from external sources. Areas covered: This review is an attempt to disclose the physiology, pharmacology, and highlight the dermatological potentials of niacinamide, discussing its pharmacological mechanisms, varied commercially available treatments, and novel approaches, i.e., in research and patented formulations. Results: Niacinamide has been verified in treating almost every skin disorder, viz. aging, hyperpigmentation, acne, psoriasis, pruritus, dermatitis, fungal infections, epidermal melasma, non-melanoma skin cancer, etc. It has been reported to possess numerous properties, for instance, anti-inflammatory, antimicrobial, antioxidant, antipruritic, and anticancer, which makes it an ideal ingredient for varied dermal therapies. Long term use of niacinamide, regardless of the skin type, paves the way for new skin cells, makingskin healthier, brighter, and hydrated. Conclusion: Niacinamide possesses a variety of positive characteristics in the field of dermatology. Novel approaches are warranted over current treatments which could bypass the above shortcomings and form an effective and stable system. Hence, niacinamide has the potential to become an individual and a productive component with wide future scope.
Parkinson’s disease (PD) is a complicated and incapacitating neurodegenerative malady that emanates following the dopaminergic (DArgic) nerve cell deprivation in the substantia nigra pars compacta (SN-PC). The etiopathogenesis of PD is still abstruse. Howbeit, PD is hypothesized to be precipitated by an amalgamation of genetic mutations and exposure to environmental toxins. The aggregation of α-synucelin within the Lewy bodies (LBs), escalated oxidative stress (OS), autophagy-lysosome system impairment, ubiquitin-proteasome system (UPS) impairment, mitochondrial abnormality, programmed cell death, and neuroinflammation are regarded as imperative events that actively participate in PD pathogenesis. The central nervous system (CNS) relies heavily on redox-active metals, particularly iron (Fe) and copper (Cu), in order to modulate pivotal operations, for instance, myelin generation, synthesis of neurotransmitters, synaptic signaling, and conveyance of oxygen (O2). The duo, namely, Fe and Cu, following their inordinate exposure, are viable of permeating across the blood–brain barrier (BBB) and moving inside the brain, thereby culminating in the escalated OS (through a reactive oxygen species (ROS)-reliant pathway), α-synuclein aggregation within the LBs, and lipid peroxidation, which consequently results in the destruction of DArgic nerve cells and facilitates PD emanation. This review delineates the metabolism of Fe and Cu in the CNS, their role and disrupted balance in PD. An in-depth investigation was carried out by utilizing the existing publications obtained from prestigious medical databases employing particular keywords mentioned in the current paper. Moreover, we also focus on decoding the role of metal complexes and chelators in PD treatment. Conclusively, metal chelators hold the aptitude to elicit the scavenging of mobile/fluctuating metal ions, which in turn culminates in the suppression of ROS generation, and thereby prelude the evolution of PD.
Parkinson’s disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin–proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.