Coinfections with pathogenic microbes continually confront cervical mucosa, yet their implications in pathogenesis remain unclear. Lack of in-vitro models recapitulating cervical epithelium has been a bottleneck to study coinfections. Using patient-derived ectocervical organoids, we systematically modeled individual and coinfection dynamics of Human papillomavirus (HPV)16 E6E7 and Chlamydia, associated with carcinogenesis. The ectocervical stem cells were genetically manipulated to introduce E6E7 oncogenes to mimic HPV16 integration. Organoids from these stem cells develop the characteristics of precancerous lesions while retaining the self-renewal capacity and organize into mature stratified epithelium similar to healthy organoids. HPV16 E6E7 interferes with Chlamydia development and induces persistence. Unique transcriptional and post-translational responses induced by Chlamydia and HPV lead to distinct reprogramming of host cell processes. Strikingly, Chlamydia impedes HPV-induced mechanisms that maintain cellular and genome integrity, including mismatch repair in the stem cells. Together, our study employing organoids demonstrates the hazard of multiple infections and the unique cellular microenvironment they create, potentially contributing to neoplastic progression.
The gastroesophageal junction (GEJ), where squamous and columnar epithelia meet, is a hotspot for Barrett’s metaplasia development, dysbiosis and carcinogenesis. However, the mechanisms regulating GEJ homeostasis remain unclear. Here, by employing organoids, bulk and single-cell transcriptomics, single-molecule RNA in situ hybridisations and lineage tracing, we identified the spatial organisation of the epithelial, stromal compartment and the regulators that maintain the normal GEJ homeostasis. During development, common KRT8 progenitors generate committed unilineage p63/KRT5-squamous and KRT8-columnar stem cells responsible for the regeneration of postnatal esophagus and gastric epithelium that meet at GEJ. A unique spatial distribution of Wnt regulators in the underlying stromal compartment of these stem cells creates diverging Wnt microenvironments at GEJ and supports their differential regeneration. Further, we show that these tissue-resident stem cells do not possess the plasticity to transdifferentiate to the other lineage with the altered Wnt signals. Our study provides invaluable insights into the fundamental process of GEJ homeostasis and is crucial for understanding disease development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.