X-ray absorption near-edge spectra (XANES) are reported for 44 Ni(I1) and Ni(II1) complexes with Nand/or S-donor ligands.The spectra reveal features associated with 1s -3d and 1s -4p, electronic transitions, whose presence or absence and intensity provide information that allows the coordination number/geometry of the complex to be determined in most cases. The complexes in this study were selected in order to examine the reliability of coordination number/geometry assignments in complexes with low symmetry and to examine the effects on the spectra of a change in formal oxidation state from +I1 to +HI. The effects on the spectra due to changes in the ligand environment are examined, and the edge energy and the breadth of the edge are found to correlate with the average hardness of the ligand environment. The effects on the spectra due to oxidation state changes are examined by using several pairs of Ni(II/III) isoleptic complexes. These compounds reveal that the effects of changes in the formal oxidation state of the Ni center are strongly dependent on the nature of the ligands present, with S-donor ligands giving rise to smaller shifts in edge energy than N,O-donor ligands. These trends are indicative of the increasing role of ligand oxidation in Ni(lI1) thiolate complexes. These trends are corroborated by X-ray photoelectron spectroscopic (XPS) studies that show a similar trend in both ligand and metal electron binding energies. The information obtained from the model studies is used to examine the Ni K-edge XANES spectrum obtained from a sample of Thiocapsa roseopersicina hydrogenase poised in form C. This spectrum is shown to be consistent with a distorted trigonal-bipyramidal geometry and a mixed 0,N-and S-donor ligand environment for this biological Ni site. ' (3) (a) Cammack, R.; Fernandez, V. M.; Schneider, K. In The Bioinorganic Chemistry of Nickel; Lancaster, J. R., Ed.; VCH: Deerfield Beach, FL, 1988; Chapter 8. (b) Moura, J. J. G.; Tiexera, M.; Moura, I.; LeGall. J. Ibid., Chapter 9. (c) Bastian, N. R.; Wink, D. A.; Wackett, L. P.; Livingston, D. J.; Jordan, L. M.; Fox, J.; Orme-Johnson, W. H.; Walsh, C. T. Ibid., Chapter 10. (4) Ragsdale, S . W.; Wood, H. G.; Morton, T. A.; Ljungdahl, L. G.; DerVartanian, D. Hasnain, S. S.; Piggott, B.; Williams, D. J. Biochem. J. 1984, 220, 591. (9) Fauque, G.; Peck, H. D., Jr.; Moura, J. J. G.; Huynh. B. H.; Berlier, Y.; DerVartanian, D. V.; Teixeira, M.; Przybyla, A. E.; Lespinat, P. A.; Moura, I.; LeGall, J. FEMS Microbiol. Rev. 1988, 54, 299. (IO) (a) Lindahl, P. A.; Kojima, N.; Hausinger, R. P.; Fox, J. A,; Tco, B. K.; Walsh, C. T.; Orme-Johnson, W. H. J. Am. Chem. Soc. 1984,106, 3062. (b) Scott, R. A.; Wallin, S . A.; Czechowski, M.; Dervartanian, D. V.; LeGall, J.; Peck, H. D., Jr.; Moura, I. J. Am. Chem. Soc. 1984, 106, 6864. (c) Scott, R. A.; Czechowski, M.; DerVartanian, D. V.; LeGall, J.; Peck, H. D., Jr.; Moura, I. Rev. Port. Quim. 1985, 27,67. (d) Albracht, S . P. J.; Kroger, A,; van der Zwaan, J. W.; Unden, G.; Bikher, R.; Mell, H.; Fontijn, R. D. Bioc...
The recent surprising discovery of the beneficial effects of carbon monoxide (CO) in mammalian physiology has drawn attention toward site-specific delivery of CO to biological targets. To avoid difficulties in handling of this noxious gas in hospital settings, researchers have focused their attention on metal carbonyl complexes as CO-releasing molecules (CORMs). Because further control of such CO delivery through light-triggering can be achieved with photoactive metal carbonyl complexes (photoCORMs), we and other groups have attempted to isolate such complexes in the past few years. Typical metal carbonyl complexes release CO when exposed to UV light, a fact that often deters their use in biological systems. From the very beginning, our effort therefore was directed toward identifying design principles that could lead to photoCORMs that release CO upon illumination with low-power (5-15 mW/cm(2)) visible and near-IR light. In our work, we have utilized Mn(I), Re(I), and Ru(II) centers (all d(6) ground state configuration) to ensure overall stability of the carbonyl complexes. We also hypothesized that transfer of electron density from the electron-rich metal centers to π* MOs of the ligand frame via strong metal-to-ligand charge transfer (MLCT) transitions in the visible/near-IR region would weaken metal-CO back-bonding and promote rapid CO photorelease. This expectation has been realized in a series of carbonyl complexes derived from a variety of designed ligands and smart choice of ligand/coligand combinations. Several principles have emerged from our systematic approach to the design of principal ligands and the choice of auxiliary ligands (in addition to the number of CO) in synthesizing these photoCORMs. In each case, density functional theory (DFT) and time-dependent DFT (TDDFT) study afforded insight into the dependence of the CO photorelease from a particular photoCORM on the wavelength of light. Results of these theoretical studies indicate that extended conjugation in the principal ligand frames as well as the nature of the donor groups lower the energy of the lowest unoccupied MOs (LUMOs) while auxiliary ligands like PPh3 and Br(-) modulate the energy of the occupied orbitals depending on their strong σ- or π-donating abilities. As a consequence, the ligand/coligand combination dictates the energy of the MLCT bands of the resulting carbonyl complexes. The rate of CO photorelease can be altered further by proper disposition of the coligands in the coordination sphere to initiate trans-effect or alter the extent of π back-bonding in the metal-CO bonds. Addition of more CO ligands blue shift the MLCT bands, while intersystem crossing impedes labilization of metal-CO bonds in several Re(I) and Ru(II) carbonyl complexes. We anticipate that our design principles will provide help in the future design of photoCORMs that could eventually find use in clinical studies.
Nitric oxide (NO) can induce apoptosis (programmed cell death) at micromolar or higher doses. Although cell death via NO-induced apoptosis has been studied quite extensively, the targeted delivery of such doses of NO to infected or malignant tissues has not been achieved. The primary obstacle is indiscriminate NO release from typical systemic donors such as glycerin trinitrate: once administered, the drug travels throughout the body, and NO is released through a variety of enzymatic, redox, and pH-dependent pathways. Photosensitive NO donors have the ability to surmount this difficulty through the use of light as a localized stimulus for NO delivery. The potential of the method has prompted synthetic research efforts toward new NO donors for use as photopharmaceuticals in the treatment of infections and malignancies. Over the past few years, we have designed and synthesized several metal nitrosyls (NO complexes of metals) that rapidly release NO when exposed to low-power (milliwatt or greater) light of various wavelengths. Among them, the ruthenium nitrosyls exhibit exceptional stability in biological media. However, typical ruthenium nitrosyls release NO upon exposure to UV light, which is hardly suitable for phototherapy. By following a few novel synthetic strategies, we have overcome this problem and synthesized a variety of ruthenium nitrosyls that strongly absorb light in the 400-600-nm range and rapidly release NO under such illumination. In this Account, we describe our progress in designing photoactive ruthenium nitrosyls as visible-light-sensitive NO donors. Our research has shown that alteration of the ligands, in terms of (i) donor atoms, (ii) extent of conjugation, and (iii) substituents on the ligand frames, sensitizes the final ruthenium nitrosyls toward visible light in a predictable fashion. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations provide guidance in this "smart design" of ligands. We have also demonstrated that direct attachment of dye molecules as light-harvesting antennas also sensitize ruthenium nitrosyls to visible light, and TDDFT calculations provide insight into the mechanisms of sensitization by this technique. The fluorescence of the dye ligands makes these NO donors "trackable" within cellular matrices. Selected ruthenium nitrosyls have been used to deliver NO to cellular targets to induce apoptosis. Our open-design strategies allow the isolation of a variety of these ruthenium nitrosyls, depending on the choices of the ligand frames and dyes. These designed nitrosyls will thus be valuable in the future endeavor of synthesizing novel pharmaceuticals for phototherapy.
The Mn(II) and Mn(III) complexes of the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy3H; H is the dissociable carboxamide H), namely, [Mn(PaPy3)(H2O)]ClO4 (1) and [Mn(PaPy3)(Cl)]ClO4 (2), with bound carboxamido nitrogen have been isolated and characterized. The high-spin Mn(II) center in 1 is very sensitive to dioxygen, and this complex is rapidly converted into 2 upon reaction with Cl- in air. The bound carboxamido nitrogen in 1 is responsible for this sensitivity toward oxidation since the analogous Schiff base complex [Mn(SBPy3)Cl]ClO4 (4) is very resistant to oxidation. Reaction of NO with 1 affords the diamagnetic [Mn-NO]6 nitrosyl [Mn(PaPy3)(NO)]ClO4 (5). Complexes with no bound carboxamido nitrogen such as 4 and [Mn(PaPy3H)(Cl)2] (3) do not react with NO. No reaction with NO is observed with the Mn(III) complexes 2 and [Mn(PaPy3)(MeCN)]2+ either. Collectively these reactions indicate that NO reacts only with the Mn(II) center ligated to at least one carboxamido nitrogen. Both the carbonyl and N-O stretching frequencies (nu(CO) and nu(NO)) of the present and related complexes strongly suggest a [low-spin Mn(II)-NO*] formulation for 5. The alternative description [low-spin Mn(I)-NO+] is not supported by the spectroscopic and redox behavior of 5. Complex 5 is the first example of a [Mn-NO]6 nitrosyl that exhibits photolability of NO upon illumination with low-intensity tungsten lamps in solvents such as MeCN and H2O. The rapid NO loss from 5 leads to the formation of the corresponding solvato species [Mn(PaPy3)(MeCN)]2+ under aerobic conditions. Oxidation of 5 with (NH4)2[Ce(NO3)6] in MeCN affords the highly reactive paramagnetic (S = 1/2) [MnNO]5 nitrosyl [Mn(PaPy3)(NO)](NO3)2 (6) in high yield. Spectroscopic and magnetic studies confirm a [low-spin Mn(II)-NO+] formulation for 6. The N-O stretching frequencies (nu(NO)) of 5, 6, and analogous nitrosyls reported by other groups collectively suggest that nu(NO) is a better indicator of the oxidation state of NO (NO+, NO*, or NO-) in non-heme iron and other transition-metal complexes with bound NO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.