Background
Cerebellar mutism syndrome (CMS) is a common complication following resection of posterior fossa tumors, most commonly after surgery for medulloblastoma. Medulloblastoma subgroups have historically been treated as a single entity when assessing CMS risk; however, recent studies highlighting their clinical heterogeneity suggest the need for subgroup-specific analysis. Here, we examine a large international multicenter cohort of molecularly characterized medulloblastoma patients to assess predictors of CMS.
Methods
We assembled a cohort of 370 molecularly characterized medulloblastoma subjects with available neuroimaging from 5 sites globally, including Great Ormond Street Hospital, Christian Medical College and Hospital, the Hospital for Sick Children, King Hussein Cancer Center, and Lucile Packard Children’s Hospital. Age at diagnosis, sex, tumor volume, and CMS development were assessed in addition to molecular subgroup.
Results
Overall, 23.8% of patients developed CMS. CMS patients were younger (mean difference −2.05 years ± 0.50, P = 0.0218) and had larger tumors (mean difference 10.25 cm3 ± 4.60, P = 0.0010) that were more often midline (odds ratio [OR] = 5.72, P < 0.0001). In a multivariable analysis adjusting for age, sex, midline location, and tumor volume, Wingless (adjusted OR = 4.91, P = 0.0063), Group 3 (adjusted OR = 5.56, P = 0.0022), and Group 4 (adjusted OR = 8.57 P = 9.1 × 10−5) tumors were found to be independently associated with higher risk of CMS compared with sonic hedgehog tumors.
Conclusions
Medulloblastoma subgroup is a very strong predictor of CMS development, independent of tumor volume and midline location. These findings have significant implications for management of both the tumor and CMS.
BACKGROUND AND PURPOSE:Neuroimaging has an important role in detecting CNS involvement in children with systemic or CNS isolated hemophagocytic lymphohistiocytosis. We characterized a cohort of pediatric patients with CNS hemophagocytic lymphohistiocytosis focusing on neuroradiologic features and assessed whether distinct MR imaging patterns and genotype correlations can be recognized.
Relapsing demyelinating syndromes (RDS) in children encompass a diverse spectrum of entities including multiple sclerosis (MS) acute disseminated encephalomyelitis (ADEM), aquaporin-4 antibody associated neuromyelitis optica spectrum disorder (AQP4-NMOSD) and myelin oligodendrocyte glycoprotein antibody disease (MOG-AD). In addition to these, there are "antibody-negative" demyelinating syndromes which are yet to be fully characterized and defined. The paucity of specific biomarkers and overlap in clinical presentations makes the distinction between these disease entities difficult at initial presentation and, as such, there is a heavy reliance on magnetic resonance imaging (MRI) findings to satisfy the criteria for treatment initiation and optimization. Misdiagnosis is not uncommon and is usually related to the inaccurate application of criteria or failure to identify potential clinical and radiological mimics. It is also notable that there are instances where AQP4 and MOG antibody testing may be falsely negative during initial clinical episodes, further complicating the issue. This article illustrates the typical clinico-radiological phenotypes associated with the known pediatric RDS at presentation and describes the neuroimaging mimics of these using a pattern-based approach in the brain, optic nerves, and spinal cord. Practical guidance on key distinguishing features in the form of clinical and radiological red flags are incorporated. A subsection on clinical mimics with characteristic imaging patterns that assist in establishing alternative diagnoses is also included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.