During the development of immune responses to pathogens, self-antigens, or environmental allergens, naive CD4(+) T cells differentiate into subsets of effector cells including Th1, Th2, and Th17 cells. The differentiation into these subsets is controlled by specific transcription factors. The activity of these effector cells is limited by nTregs and iTregs, whose differentiation and maintenance are dependent on the transcription factor Foxp3. The regulation of autoimmune diseases mediated by Th1 and Th17 cells by Tregs has been studied and reviewed extensively. However, much less has been presented about the interplay between Tregs and Th2 cells and their contribution to allergic disease. In this perspective, we discuss the regulation of Th2 cells by Tregs and vice versa, focusing on the interplay between the IL-4-activated STAT6/GATA3 pathway and Foxp3.
Th2 cells induce asthma through the secretion of cytokines. Two such cytokines, IL-4 and IL-13, are critical mediators of many features of this disease. They both share a common receptor subunit, IL-4Rα, and signal through the STAT6 pathway. STAT6−/− mice have impaired Th2 differentiation and reduced airway response to allergen. Transferred Th2 cells were not able to elicit eosinophilia in response to OVA in STAT6−/− mice. To clarify the role of STAT6 in allergic airway inflammation, we generated mouse bone marrow (BM) chimeras. We observed little to no eosinophilia in OVA-treated STAT6−/− mice even when STAT6+/+ BM or Th2 cells were provided. However, when Th2 cells were transferred to STAT6×Rag2−/− mice, we observed an eosinophilic response to OVA. Nevertheless, the expression of STAT6 on either BM-derived cells or lung resident cells enhanced the severity of OVA-induced eosinophilia. Moreover, when both the BM donor and recipient lacked lymphocytes, transferred Th2 cells were sufficient to induce the level of eosinophilia comparable with that of wild-type (WT) mice. The expression of STAT6 in BM-derived cells was more critical for the enhanced eosinophilic response. Furthermore, we found a significantly higher number of CD4+CD25+ Foxp3+ T cells (regulatory T cells [Tregs]) in PBS- and OVA-treated STAT6−/− mouse lungs compared with that in WT animals suggesting that STAT6 limits both naturally occurring and Ag-induced Tregs. Tregs obtained from either WT or STAT6−/− mice were equally efficient in suppressing CD4+ T cell proliferation in vitro. Taken together, our studies demonstrate multiple STAT6-dependent and -independent features of allergic inflammation, which may impact treatments targeting STAT6.
BackgroundThe IL-4 receptor α (IL-4Rα) chain has a broad expression pattern and participates in IL-4 and IL-13 signaling, allowing it to influence several pathological components of allergic lung inflammation. We previously reported that IL-4Rα expression on both bone marrow-derived and non-bone marrow-derived cells contributed to the severity of allergic lung inflammation. There was a correlation between the number of macrophages expressing the IL-4Rα, CD11b, and IAd, and the degree of eosinophilia in ovalbumin challenged mice. The engagement of the IL-4Rα by IL-4 or IL-13 is able to stimulate the alternative activation of macrophages (AAM). The presence of AAM has been correlated with inflammatory responses to parasites and allergens. Therefore, we hypothesized that IL-4Rα+ AAM play an active role in allergic lung inflammation. To directly determine the role of AAM in allergic lung inflammation, M-CSF-dependent macrophages (BMM) were prepared from the bone-marrow of IL-4Rα positive and negative mice and transferred to IL-4RαxRAG2-/- mice. Wild type TH2 cells were provided exogenously.ResultsMice receiving IL-4Rα+/+ BMM showed a marked increase in the recruitment of eosinophils to the lung after challenge with ovalbumin as compared to mice receiving IL-4Rα-/- BMM. As expected, the eosinophilic inflammation was dependent on the presence of TH2 cells. Furthermore, we observed an increase in cells expressing F4/80 and Mac3, and the AAM marker YM1/2 in the lungs of mice receiving IL-4Rα+/+ BMM. The BAL fluid from these mice contained elevated levels of eotaxin-1, RANTES, and CCL2.ConclusionsThese results demonstrate that transfer of IL-4Rα + macrophages is sufficient to enhance TH2-driven, allergic inflammation. They further show that stimulation of macrophages through IL-4Rα leads to their alternative activation and positive contribution to the TH2-driven allergic inflammatory response in the lung. Since an increase in AAM and their products has been observed in patients with asthma exacerbations, these results suggest that AAM may be targeted to alleviate exacerbations.
BackgroundCD4+ T helper type 2 (TH2) cells, their cytokines IL-4, IL-5 and IL-13 and the transcription factor STAT6 are known to regulate various features of asthma including lung inflammation, mucus production and airway hyperreactivity and also drive alternative activation of macrophages (AAM). However, the precise roles played by the IL-4/IL-13 receptors and STAT6 in inducing AAM protein expression and modulating specific features of airway inflammation are still unclear. Since TH2 differentiation and activation plays a pivotal role in this disease, we explored the possibility of developing an asthma model in mice using T cells that were differentiated in vivo.ResultsIn this study, we monitored the activation and proliferation status of adoptively transferred allergen-specific naïve or in vivo primed CD4+ T cells. We found that both the naïve and in vivo primed T cells expressed similar levels of CD44 and IL-4. However, in vivo primed T cells underwent reduced proliferation in a lymphopenic environment when compared to naïve T cells. We then used these in vivo generated effector T cells in an asthma model. Although there was reduced inflammation in mice lacking IL-4Rα or STAT6, significant amounts of eosinophils were still present in the BAL and lung tissue. Moreover, specific AAM proteins YM1 and FIZZ1 were expressed by epithelial cells, while macrophages expressed only YM1 in RAG2-/- mice. We further show that FIZZ1 and YM1 protein expression in the lung was completely dependent on signaling through the IL-4Rα and STAT6. Consistent with the enhanced inflammation and AAM protein expression, there was a significant increase in collagen deposition and smooth muscle thickening in RAG2-/- mice compared to mice deficient in IL-4Rα or STAT6.ConclusionsThese results establish that transfer of in vivo primed CD4+ T cells can induce allergic lung inflammation. Furthermore, while IL-4/IL-13 signaling through IL-4Rα and STAT6 is essential for AAM protein expression, lung inflammation and eosinophilia are only partially dependent on this pathway. Further studies are required to identify other proteins and signaling pathways involved in airway inflammation.
The concept that macrophages play an active role in inflammatory responses began its development in the late 1800s with the now iconic studies by Elie Metchnikoff using starfish larvae and Daphnia [reviewed in Kaufmann SHE: Nat Immunol 2008;9:705–712 and Cavaillon JM: J Leukoc Biol 2011;90:413–424]. Based on his observation of the phagocyte response to a foreign body (rose thorn) and yeast, he proposed that phagocytes acted in host defense and were active participants in the inflammatory process. Flash forward more than 100 years and we find that these basic tenets hold true. However, it is now appreciated that macrophages come in many different flavors and can adopt a variety of nuanced phenotypes depending on the tissue environment in which the macrophage is found. In this brief review, we discuss the role of one type of macrophage termed the alternatively activated macrophage (AAM), also known as the M2 type of macrophage, in regulating allergic lung inflammation and asthma. Recent studies using mouse models of allergic lung inflammation and samples from human asthma patients contribute to the emerging concept that AAMs are not just bystanders of the interleukin (IL)-4- and IL-13-rich environment found in allergic asthma but are also active players in orchestrating allergic lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.