Split Federated Learning (SFL) is a distributed machine learning framework which strategically divides the learning process between a server and clients and collaboratively trains a shared model by aggregating local models updated based on data from distributed clients. However, data heterogeneity and partial client participation result in label distribution skew, which severely degrades the learning performance. To address this issue, we propose SFL with Concatenated Activations and Logit Adjustments (SCALA). Specifically, the activations from the client-side models are concatenated as the input of the server-side model so as to centrally adjust label distribution across different clients, and logit adjustments of loss functions on both server-side and client-side models are performed to deal with the label distribution variation across different subsets of participating clients. Theoretical analysis and experimental results verify the superiority of the proposed SCALA on public datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.