Alterations in the gut microbiota may influence gastrointestinal (GI) dysbiosis frequently reported in individuals with autism spectrum disorder (ASD). In this study, we sequenced the bacterial 16S rRNA gene to evaluate changes in fecal microbiota between 48 children with ASD and 48 healthy children in China. At the phylum level, the number of Firmicutes, Proteobacteria, and Verrucomicrobia decreased in children with ASD, while the Bacteroidetes/Firmicutes was significantly higher in autistic children due to enrichment of Bacteroidetes. At the genus level, the amount of Bacteroides, Prevotella, Lachnospiracea_incertae_sedis, and Megamonas increased, while Clostridium XlVa, Eisenbergiella, Clostridium IV, Flavonifractor, Escherichia/Shigella, Haemophilus, Akkermansia, and Dialister decreased in children with ASD relative to the controls. Significant increase was observed in the number of species synthesizing branched‐chain amino acids (BCAAs), like Bacteroides vulgatus and Prevotella copri, while the numbers of Bacteroides fragilis and Akkermansia muciniphila decreased in children with ASD compared to the controls. Most importantly, the highest levels of pathogenic bacteria were different for each child with ASD in this cohort. We found that only one functional module, cellular antigens, was enriched in children with ASD, and other pathways like lysine degradation and tryptophan metabolism were significantly decreased in children with ASD. These findings provide further evidence of altered gut microbiota in Chinese ASD children and may contribute to the treatment of patients with ASD. Lay Summary This study characterized the gut bacteria composition of 48 children with ASD and 48 neurotypical children in China. The metabolic disruptions caused by altered gut microbiota may contribute significantly to the neurological pathophysiology of ASD, including significant increases in the number of species synthesizing BCAAs, and decreases in the number of probiotic species. These findings suggest that a gut microbiome‐associated therapeutic intervention may provide a novel strategy for treating GI symptoms frequently seen in individuals with ASD. Autism Res 2020, 13: 1614–1625. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Purpose Patella resurfacing or nonresurfacing in total knee arthroplasty remains controversial. The aim of this study was to evaluate the efficacy of patellar resurfacing through an evaluation of the current literature. Methods We carried out a meta-analysis of randomised controlled trials comparing total knee arthroplasties performed with and without patellar resurfacing. Outcomes of reoperation, anterior knee pain and knee scores were analysed. Results Fourteen trials assessing 1,725 knees were eligible. The absolute risk of reoperation was reduced by 4 % (95 % confidence interval, 2-6 %) in the patellar resurfacing arm (between-study heterogeneity, P=0.05, I 2 =42 %), implying that one would have to resurface 25 patellae (95 % confidence interval, 17-50 patellae) in order to prevent one reoperation.
Type 2 diabetes mellitus (T2DM) is a complex disorder comprehensively influenced by genetic and environmental risk, and research increasingly has indicated the role of microbial dysbiosis in T2DM pathogenesis. However, studies comparing the microbiome characteristics between T2DM and healthy controls have reported inconsistent results. To further identify and describe the characteristics of the intestinal flora of T2DM patients, we performed a systematic review and meta-analysis of stool microbial profiles to discern and describe microbial dysbiosis in T2DM and to explore heterogeneity among 7 studies (600 T2DM cases, 543 controls, 1143 samples in total). Using a random effects model and a fixed effects model, we observed significant differences in beta diversity, but not alpha diversity, between individuals with T2DM and controls. We identified various operational taxonomic unit (OTUs) and bacterial genera with significant odds ratios for T2DM. The T2DM signatures derived from a single study by stepwise feature selection could be applied in other studies. By training on multiple studies, we improved the detection accuracy and disease specificity for T2DM. We also discuss the relationship between T2DM-enriched or T2DM-depleted genera and probiotics and provide new ideas for diabetes prevention and improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.