BackgroundThe objective of this study was to evaluate the feasibility and diagnostic value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and 99mTc-methylenediphosphonate (MDP) whole-body bone scanning (BS) for the detection of osteolytic bone metastases.MethodsThirty-four patients with pathologically confirmed malignancies and suspected osteolytic bone metastases underwent 18F-FDG PET/CT and 99mTc-MDP whole-body BS within 30 days. The sensitivity, specificity, and accuracy with respect to the diagnosis of osteolytic bone metastases and bone lesions were compared between the two imaging methods.ResultsThe sensitivity, specificity, and accuracy of 18F-FDG PET/CT for the diagnosis of osteolytic bone metastases were 94.3% (95% confidence interval [CI], 91.6–96.2%), 83.3% (95% CI, 43.6–96.9%), and 94.2% (95% CI, 91.5–96.1%), respectively. It was found that 99mTc-MDP whole-body BS could discriminate between patients with 50.2% (95% CI, 45.4–55.1%) sensitivity, 50.0% (95% CI, 18.8–81.2%) specificity, and 50.2% (95% CI, 45.5–55.1%) accuracy. 18F-FDG PET/CT achieved higher sensitivity, specificity, and accuracy in detecting osteolytic bone metastases than 99mTc-MDP whole-body BS (p<0.001).ConclusionsF-FDG PET/CT has a higher diagnostic value than 99mTc-MDP whole-body BS in the detection of osteolytic bone metastases, especially in the vertebra.
Background and Aims: Microvascular invasion (MVI) affects recurrence after treatment of small hepatocellular carcinoma (sHCC) of ≤3 cm in size. The present study aimed to investigate whether abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and intermuscular adipose tissue (IMAT) are associated with MVI in patients with sHCC. Methods: A total of 124 patients with pathologicallyconfirmed sHCC diagnosed on surgical resection at the First Hospital Affiliated to Army Military University were recruited and divided into two groups according to MVI classification criteria (i.e., MVI-positive or MVI-negative). The SAT, VAT, and IMAT areas at the lumbar 3 vertebral level were imaged with abdominal computed tomography and measured using ImageJ software. Their association with MVI in sHCC was analyzed. Results: Of the 124 patients with sHCC, 67 were MVI-positive and 57 were MVI-negative. Univariate analysis revealed a significant difference in the abdominal VAT and SAT between the MVI-positive and MVI-negative groups (p<0.05), with an area under the receiver operating characteristic curve of 0.76 and 0.65, respectively. Conclusions: The results of this study suggest that the areas of abdominal SAT and VAT are of significant clinical value because they can effectively predict the MVI status in patients with sHCC.
AimThe aim of this study is to establish and validate a radiomics-based model using preoperative Gd-EOB-DTPA-enhanced MRI to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma ≤ 5 cm.MethodsClinicopathologic and MRI data of 178 patients with solitary hepatocellular carcinoma (HCC) (≤5 cm) were retrospectively collected from a single medical center between May 2017 and November 2020. Patients were randomly assigned into training and test subsets by a ratio of 7:3. Imaging features were extracted from the segmented tumor volume of interest with 1-cm expansion on arterial phase (AP) and hepatobiliary phase (HBP) images. Different models based on the significant clinical risk factors and/or selected imaging features were established and the predictive performance of the models was evaluated.ResultsThree radiomics models, the AP_model, the HBP_model, and the AP+HBP_model, were constructed for MVI prediction. Among them, the AP+HBP_model outperformed the other two. When it was combined with a clinical model, consisting of tumor size and alpha-fetoprotein (AFP), the combined model (AP+HBP+Clin_model) showed an area under the curve of 0.90 and 0.70 in the training and test subsets, respectively. Its sensitivity and specificity were 0.91 and 0.76 in the training subset and 0.60 and 0.79 in the test subset, respectively. The calibration curve illustrated that the combined model possessed a good agreement between the predicted and the actual probabilities.ConclusionsThe radiomics-based model combining imaging features from the arterial and hepatobiliary phases of Gd-EOB-DTPA-enhanced MRI and clinical risk factors provides an effective and reliable tool for the preoperative prediction of MVI in patients with HCC ≤ 5 cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.