BackgroundPreeclampsia (PE) is a pregnancy-related vascular disorder which is the leading cause of maternal morbidity and mortality. We sought to identify novel serological protein markers to diagnose PE with a multi-’omics’ based discovery approach.MethodsSeven previous placental expression studies were combined for a multiplex analysis, and in parallel, two-dimensional gel electrophoresis was performed to compare serum proteomes in PE and control subjects. The combined biomarker candidates were validated with available ELISA assays using gestational age-matched PE (n=32) and control (n=32) samples. With the validated biomarkers, a genetic algorithm was then used to construct and optimize biomarker panels in PE assessment.ResultsIn addition to the previously identified biomarkers, the angiogenic and antiangiogenic factors (soluble fms-like tyrosine kinase (sFlt-1) and placental growth factor (PIGF)), we found 3 up-regulated and 6 down-regulated biomakers in PE sera. Two optimal biomarker panels were developed for early and late onset PE assessment, respectively.ConclusionsBoth early and late onset PE diagnostic panels, constructed with our PE biomarkers, were superior over sFlt-1/PIGF ratio in PE discrimination. The functional significance of these PE biomarkers and their associated pathways were analyzed which may provide new insights into the pathogenesis of PE.
Identification of maternal environmental factors influencing preterm birth risks is important to understand the reasons for the increase in prematurity since 1990. Here, we utilized a health survey, the US National Health and Nutrition Examination Survey (NHANES) to search for personal environmental factors associated with preterm birth. 201 urine and blood markers of environmental factors, such as allergens, pollutants, and nutrients were assayed in mothers (range of N: 49 to 724) who answered questions about any children born preterm (delivery <37 weeks). We screened each of the 201 factors for association with any child born preterm adjusting by age, race/ethnicity, education, and household income. We attempted to verify the top finding, urinary bisphenol A, in an independent study of pregnant women attending Lucile Packard Children’s Hospital. We conclude that the association between maternal urinary levels of bisphenol A and preterm birth should be evaluated in a larger epidemiological investigation.
BackgroundNecrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting.Study designA six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data.ResultsMachine learning using clinical and laboratory results at the time of clinical presentation led to two NEC models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner.Algorithm availability http://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.
For complex industrial processes with multiple operating conditions and dynamic characteristics, the traditional dynamic process monitoring techniques (e.g., canonical variate analysis, CVA) are not well-suited, because the fundamental assumption that the operating data follow a unimodal Gaussian distribution usually becomes invalid. In this article, a novel mixture canonical variate analysis (MCVA) model is proposed to model and monitor multimode dynamic processes. First, the augmented process data are assumed to be many different clusters, each of which corresponds to an operating mode and can be characterized by a Gaussian component. Then, singular value decomposition of the covariance matrices is implemented in each Gaussian cluster and the corresponding canonical variates are obtained. For process monitoring purposes, the local statistics in each cluster are calculated and the integrated monitoring indices are obtained in a probabilistic manner. The validity and effectiveness of the proposed monitoring approach are illustrated through two examples: a numerical process and the Tennessee Eastman challenge problem. The comparison of monitoring results demonstrates that the proposed approach is superior to conventional CVA and Gaussian mixture models (GMM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.