Perovskite solar cells (PSCs) are the most promising commercial photoelectric conversion technology in the future. The planar p–i–n structure cells have advantages in negligible hysteresis, low temperature preparation and excellent stability. However, for inverted planar PSCs, the non-radiative recombination at the interface is an important reason that impedes the charge transfer and improvement of power conversion efficiency. Having a homogeneous, compact, and energy-level-matched charge transport layer is the key to reducing non-radiative recombination. In our study, NiO
x
/Sr:NiO
x
bilayer hole transport layer (HTL) improves the holes transmission of NiO
x
based HTL, reduces the recombination in the interface between perovskite and HTL layer and improves the device performance. The bilayer HTL enhances the hole transfer by forming a driving force of an electric field and further improves J
sc. As a result, the device has a power conversion efficiency of 18.44%, a short circuit current density of 22.81 mA⋅cm−2 and a fill factor of 0.80. Compared to the pristine PSCs, there are certain improvements of optical parameters. This method provides a new idea for the future design of novel hole transport layers and the development of high-performance solar cells.
In the last ten years, bismuth oxybromide (BiOBr) has attracted wide attention due to its superior optoelectronic property. However, its practical application still suffers from slow carrier transport and high carrier recombination. Here we report a kind of novel tannum indium sulfide (SnIn4S8)/BiOBr hybrid prepared by a two-step hydrothermal method. The results showed that small amount of SnIn4S8 had no influence on the crystal phase of BiOBr, but the morphology could be regulated from nanosheet to nanoflower. Specially, SnIn4S8 exerted a slight effect on the light absorption and band gap of BiOBr. Importantly, SnIn4S8/BiOBr hybrids exhibited remarkable enhancement of the photocatalytic activity towards the degradation of rhodamin B (RhB) dye molecules. SnIn4S8/BiOBr-0.20 with 99.8% degradation efficiency had the highest photocatalytic activity within 40 min, while it was only 71.1% for pure BiOBr. The enhanced photocatalytic activity was mainly attributed to efficient interfacial transfer and low carrier recombination. This work will help us understand the photocatalytic mechanism of bismuth oxyhalide hybrids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.