Background In this study, we comprehensively analyzed genes related to ferroptosis and iron metabolism to construct diagnostic and prognostic models and explore the relationship with the immune microenvironment in HCC. Methods Integrated analysis, cox regression and the least absolute shrinkage and selection operator (LASSO) method of 104 ferroptosis- and iron metabolism-related genes and HCC-related RNA sequencing were performed to identify HCC-related ferroptosis and iron metabolism genes. Results Four genes (ABCB6, FLVCR1, SLC48A1 and SLC7A11) were identified to construct prognostic and diagnostic models. Poorer overall survival (OS) was exhibited in the high-risk group than that in the low-risk group in both the training cohort (P < 0.001, HR = 0.27) and test cohort (P < 0.001, HR = 0.27). The diagnostic models successfully distinguished HCC from normal samples and proliferative nodule samples. Compared with low-risk groups, high-risk groups had higher TMB; higher fractions of macrophages, follicular helper T cells, memory B cells, and neutrophils; and exhibited higher expression of CD83, B7H3, OX40 and CD134L. As an inducer of ferroptosis, erastin inhibited HCC cell proliferation and progression, and it was showed to affect Th17 cell differentiation and IL-17 signaling pathway through bioinformatics analysis, indicating it a potential agent of cancer immunotherapy. Conclusions The prognostic and diagnostic models based on the four genes indicated superior diagnostic and predictive performance, indicating new possibilities for individualized treatment of HCC patients. Graphical abstract
to predict the histological subtypes of lung invasive adenocarcinomas (IAs) and minimally invasive adenocarcinomas (MIAs) that manifest as partsolid ground-glass nodules (GGNs). MATERIALS AND METHODS: This retrospective study enrolled 119 patients with histopathologically confirmed part-solid GGNs assigned to the training (n¼83) or testing cohorts (n¼36). Radiomic features were extracted based on the unenhanced computed tomography (CT) images. R software was applied to process the qualitative and quantitative data. The CT features model, radiomic signature model, and combined prediction model were constructed and compared. RESULTS: A total of 396 radiomic features were extracted from the preoperative CT images, four features including MaxIntensity, RMS, ZonePercentage, and Long-RunEmphasis_angle0_offset7 were indicated to be the best discriminators to establish the radiomic signature model. The performance of the model was satisfactory in both the training and testing set with areas under the curve (AUCs) of 0.854 (95% confidence interval [CI]: 0.774 to 0.934) and 0.813 (95% CI: 0.670 to 0.955), respectively. The CT morphology of the lesion shape and diameter of the solid component were confirmed to be a significant feature for building the CT features model, which had an AUC of 0.755 (95% CI: 0.648 to 0.843). A nomogram that integrated lesion shape and radiomic signature was constructed, which contributed an AUC of 0.888 (95% CI: 0.82 to 0.955). CONCLUSIONS: The radiomic signature could provide an important reference for differentiating IAs from MIAs, and could be significantly enhanced by the addition of CT morphology. The nomogram may be highly informative for making clinical decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.