2D layered nanomaterials as photocatalysts have attracted much attention in the field of solar hydrogen production due to their unique electronic structure and abundant active sites. Nevertheless, the rational design and interfacial regulation of 2D Z‐scheme heterojunction are still challenging. Herein, an ultrathin 2D ZnIn2S4/g‐C3N4 Z‐scheme heterojunction is precisely constructed via in‐situ growth of ZnIn2S4 on the g‐C3N4. By carefully regulating the interface structure in heterojunction, the hydrogen evolution performance can be greatly improved. The optimized photocatalyst exhibits a remarkable photocatalytic activity without Pt as cocatalyst, which is primarily ascribed to the synergistic effect of abundant active sites, enhanced photoresponse, and valid interfacial charge transfer channels. Meanwhile, the spectroscopic analyses and density functional theory (DFT) calculation results comprehensively prove that the promoted interfacial charge separation in 2D Z‐scheme heterojunction is another key factor for the enhanced photocatalytic performance. This work offers a new avenue for the rational design of ultrathin Z‐scheme heterojunction photocatalysts with improved photocatalytic performance through interfacial engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.