Contrast-enhanced US enhancement patterns were different in benign and malignant lesions. Ring enhancement was predictive of benign lesions, whereas heterogeneous enhancement was helpful for detecting malignant lesions.
BackgroundThere currently is a need for a non-invasive measure of renal fibrosis. We aim to explore whether shear wave elastography (SWE)-derived estimates of tissue stiffness may serve as a non-invasive biomarker that can distinguish normal and abnormal renal parenchymal tissue.MethodsParticipants with CKD (by estimated GFR) and healthy volunteers underwent SWE. Renal elasticity was estimated as Young’s modulus (YM) in kilopascals (kPa). Univariate Wilcoxon rank-sum tests were used.ResultsTwenty-five participants with CKD (median GFR 38 mL/min; quartile 1, quartile 3 28, 42) and 20 healthy controls without CKD underwent SWE performed by a single radiologist. CKD was associated with increased median YM (9.40 [5.55, 22.35] vs. 4.40 [3.68, 5.70] kPa; p = 0.002) and higher median intra-subject inter-measurement estimated YM’s variability (4.27 [2.89, 9.90] vs. 1.51 [1.21, 2.05] kPa; p < 0.001).ConclusionsSWE-derived estimates of renal stiffness and intra-subject estimated stiffness variability are higher in patients with CKD than in healthy controls. Renal fibrosis is a plausible explanation for the observed difference in YM. Further studies are required to determine the relationship between YM, estimated renal stiffness, and renal fibrosis severity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12882-015-0120-7) contains supplementary material, which is available to authorized users.
Purpose:
The purpose of our study was to prospectively evaluate the diagnostic performance of the vascular index (VI, defined as the ratio of Doppler signal pixels to pixels in the total lesion) measured via Smart 3-D superb microvascular imaging (SMI) for breast lesions.
Patients and methods:
Two hundred and thirty-two consecutive patients with 236 breast lesions referred for biopsy at Peking Union Medical College Hospital were enrolled in the study from December 2016 to November 2017. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of VI were calculated with histopathologic results as the reference standard.
Results:
Of the 236 breast lesions, 121 were malignant and 115 were benign. The mean VI was significantly higher in malignant lesions (9.7±8.2) than that in benign ones (3.4±3.3) (
P
<0.0001). Sensitivity, specificity, PPV, NPV and accuracy of VI (4.0 as the threshold) were respectively: 76.0%, 66.1%, 70.2%, 72.4% and 71.2% (
P
<0.05).
Conclusion:
Smart three-dimensional (3-D) SMI is a noninvasive tool using two-dimensional (2-D) scanning to generate 3-D vascular architecture with a high-resolution image of micro-vessels. This can be used as a qualitative guide to identify the optimal 2-D SMI plane with the most abundant vasculature to guide VI quantitative measurements of breast lesions. Smart 3-D SMI may potentially serve as a noninvasive tool to accurately characterize benign versus malignant breast lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.