Correction for ‘Hemocompatible glutaminase free l-asparaginase from marine Bacillus tequilensis PV9W with anticancer potential modulating p53 expression’ by Ganeshan Shakambari et al., RSC Adv., 2016, 6, 25943–25951.
Peptide therapeutics, unlike small-molecule drugs, display crucial advantages of target specificity and the ability to block large interacting interfaces, such as those of transcription factors. The transcription co-factor of the Hippo pathway, YAP/Yorkie (Yki), has been implicated in many cancers, and is dependent on its interaction with the DNA-binding TEAD/Sd proteins via a large Ω-loop. In addition, the mammalian vestigial-like (VGLL) proteins, specifically their TONDU domain, competitively inhibit YAP-TEAD interaction, resulting in arrest of tumor growth. Here, we show that overexpression of the TONDU peptide or its oral uptake leads to suppression of Yki-driven intestinal stem cell tumors in the adult Drosophila midgut. In addition, comparative proteomic analyses of peptide-treated and untreated tumors, together with chromatin immunoprecipitation analysis, reveal that integrin pathway members are part of the Yki-oncogenic network. Collectively, our findings establish Drosophila as a reliable in vivo platform to screen for cancer oral therapeutic peptides and reveal a tumor suppressive role for integrins in Yki-driven tumors.This article has an associated First Person interview with the first author of the paper.
The proto-oncogene YAP /Yki, a transcription co-factor of the Hippo pathway, has been linked to many cancers. YAP interacts with DNA-binding TEAD/Sd proteins to regulate expression of its transcriptional targets. Disruption of YAP-TEAD therefore offers a potential therapeutic strategy. The mammalian Vestigial Like (VGLL) protein, specifically its TONDU domain, has been shown to competitively inhibit YAP-TEAD interaction and a TONDU peptide can suppress YAP-induced cancer. As TONDU could potentially be developed into a therapeutic peptide for multiple cancers, we evaluated its efficacy in Yki-driven adult Intestinal Stem Cell (ISC) tumors in Drosophila. We show that oral uptake of the TONDU peptide is highly effective at inhibiting Yki-driven gut tumors by suppressing YAP-TEAD interaction. Comparative proteomics of early and late stage Yki-driven ISC tumors revealed enrichment of a number of proteins, including members of the integrin signaling pathway, such as Talin, Vinculin and Paxillin. These, in turn displayed a decrease in their levels in TONDU-peptide treated tumors. Further, we show that Sd binds to the regulatory region of integrin-coding gene, mew, which codes for αPS1, a key integrin of the ISCs. In support to a possible role of integrins in Yki-driven ISC tumors, we show that genetic downregulation of mew arrests Yki-driven ISC proliferation, reminiscent of the effects of TONDU peptide. Altogether, our findings present a novel platform for screening therapeutic peptides and provide insights into tumor suppression mechanisms.SIGNIFICANCE STATEMENTDiscovering novel strategies to inhibit oncogene activity is a priority in cancer biology. As signaling pathways are widely conserved between mammals and Drosophila, these questions can be effectively addressed in this model organism. Here, we show that progression of Drosophila Intestinal Stem Cell (ISC) tumors induced by gain of an oncogenic form of the transcription co-factor Yki can be suppressed by feeding a peptide corresponding to the conserved TONDU domain of Vestigial (Vg), which blocks binding of Yki to the Sd transcription factor. Further, we show that down regulation of the integrin signaling pathway is causally linked to TONDU-peptide-mediated ISC tumor suppression. Our findings reveal that Drosophila can be successfully used to screen peptides for their therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.