Human voices play a fundamental role in social communication, and areas of the adult "social brain" show specialization for processing voices and their emotional content (superior temporal sulcus, inferior prefrontal cortex, premotor cortical regions, amygdala, and insula). However, it is unclear when this specialization develops. Functional magnetic resonance (fMRI) studies suggest that the infant temporal cortex does not differentiate speech from music or backward speech, but a prior study with functional near-infrared spectroscopy revealed preferential activation for human voices in 7-month-olds, in a more posterior location of the temporal cortex than in adults. However, the brain networks involved in processing nonspeech human vocalizations in early development are still unknown. To address this issue, in the present fMRI study, 3- to 7-month-olds were presented with adult nonspeech vocalizations (emotionally neutral, emotionally positive, and emotionally negative) and nonvocal environmental sounds. Infants displayed significant differential activation in the anterior portion of the temporal cortex, similarly to adults. Moreover, sad vocalizations modulated the activity of brain regions involved in processing affective stimuli such as the orbitofrontal cortex and insula. These results suggest remarkably early functional specialization for processing human voice and negative emotions.
Background There is evidence to suggest that the broad discrepancy in the ratio of males to females with diagnosed ADHD is due, at least in part, to lack of recognition and/or referral bias in females. Studies suggest that females with ADHD present with differences in their profile of symptoms, comorbidity and associated functioning compared with males. This consensus aims to provide a better understanding of females with ADHD in order to improve recognition and referral. Comprehensive assessment and appropriate treatment is hoped to enhance longer-term clinical outcomes and patient wellbeing for females with ADHD. Methods The United Kingdom ADHD Partnership hosted a meeting of experts to discuss symptom presentation, triggers for referral, assessment, treatment and multi-agency liaison for females with ADHD across the lifespan. Results A consensus was reached offering practical guidance to support medical and mental health practitioners working with females with ADHD. The potential challenges of working with this patient group were identified, as well as specific barriers that may hinder recognition. These included symptomatic differences, gender biases, comorbidities and the compensatory strategies that may mask or overshadow underlying symptoms of ADHD. Furthermore, we determined the broader needs of these patients and considered how multi-agency liaison may provide the support to meet them. Conclusions This practical approach based upon expert consensus will inform effective identification, treatment and support of girls and women with ADHD. It is important to move away from the prevalent perspective that ADHD is a behavioural disorder and attend to the more subtle and/or internalised presentation that is common in females. It is essential to adopt a lifespan model of care to support the complex transitions experienced by females that occur in parallel to change in clinical presentation and social circumstances. Treatment with pharmacological and psychological interventions is expected to have a positive impact leading to increased productivity, decreased resource utilization and most importantly, improved long-term outcomes for girls and women.
There is increasing evidence that children with autism spectrum disorder (ASD) have age-related differences from controls in cortical volume (CV). It is less clear, however, if these persist in adulthood and whether these reflect alterations in cortical thickness (CT) or cortical surface area (SA). Hence, we used magnetic resonance imaging to investigate the relationship between age and CV, CT, and SA in 127 males aged 10 through 60 years (76 with ASD and 51 healthy controls). "Regional" analyses (using cortical parcellation) identified significant age-by-group interactions in both CV and CT (but not SA) in the temporal lobes and within these the fusiform and middle temporal gyri. Spatially nonbiased "vertex-based" analysis replicated these results and identified additional "age-by-group" interactions for CT within superior temporal, inferior and medial frontal, and inferior parietal cortices. Here, CV and CT were 1) significantly negatively correlated with age in controls, but not in ASD, and 2) smaller in ASD than controls in childhood but vice versa in adulthood. Our findings suggest that CV dysmaturation in ASD extends beyond childhood, affects brain regions crucial to social cognition and language, and is driven by CT dysmaturation. This may reflect primary abnormalities in cortical plasticity and/or be secondary to disturbed interactions between individuals with ASD and their environment.
Psychopathy is strongly associated with serious criminal behaviour (for example, rape and murder) and recidivism. However, the biological basis of psychopathy remains poorly understood. Earlier studies suggested that dysfunction of the amygdala and/or orbitofrontal cortex (OFC) may underpin psychopathy. Nobody, however, has ever studied the white matter connections (such as the uncinate fasciculus (UF)) linking these structures in psychopaths. Therefore, we used in vivo diffusion tensor magnetic resonance imaging (DT-MRI) tractography to analyse the microstructural integrity of the UF in psychopaths (defined by a Psychopathy Checklist Revised (PCL-R) score of X25) with convictions that included attempted murder, manslaughter, multiple rape with strangulation and false imprisonment. We report significantly reduced fractional anisotropy (FA) (P < 0.003), an indirect measure of microstructural integrity, in the UF of psychopaths compared with age-and IQ-matched controls. We also found, within psychopaths, a correlation between measures of antisocial behaviour and anatomical differences in the UF. To confirm that these findings were specific to the limbic amygdala-OFC network, we also studied two 'non-limbic' control tracts connecting the posterior visual and auditory areas to the amygdala and the OFC, and found no significant between-group differences. Lastly, to determine that our findings in UF could not be totally explained by non-specific confounds, we carried out a post hoc comparison with a psychiatric control group with a past history of drug abuse and institutionalization. Our findings remained significant. Taken together, these results suggest that abnormalities in a specific amygdala-OFC limbic network underpin the neurobiological basis of psychopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.