The chemical changes which occur during the process of carious destruction of enamel are complex due to a number of factors. First, substituted hydroxyapatite, the main component of dental enamel, can behave in a very complex manner during dissolution. This is due not only to its ability to accept substituent ions but also to the wide range of calcium phosphate species which can form following dissolution. In addition, the composition, i.e., the extent of substitution, changes throughout enamel in the direction of carious attack, i.e., from surface to interior. Both surface and positively birefringent zones of the lesion clearly illustrate that carious destruction is not simple dissolution. Selective dissolution of soluble minerals occurs, and there is the probability of reprecipitation. The role of fluoride here is crucial in that not only does it protect enamel per se but also its presence in solution means that rather insoluble fluoridated species can form very easily, encouraging redeposition. The role of organic material clearly needs further investigation, but there is the real possibility of both inhibition of repair and facilitation of redeposition. For the future, delivering fluoride deep into the lesion would appear to offer the prospect of improved repair. This would entail a delivery vehicle which solved the problem of fluoride uptake by apatite at the tooth surface. Elucidation of the role of organic material may also reveal putative mechanisms for encouraging repair and/or protecting the enamel mineral.
Rationally designed l3-sheet-forming peptides that spontaneously form three-dimensional fibrillar scaffolds in response to specific environmental triggers may potentially be used in skeletal tissue engineering, including the treatment/prevention of dental caries, via bioactive surface groups. We hypothesized that infiltration of caries lesions with monomeric low-viscosity peptide solutions would be followed by in situ polymerization triggered by conditions of pH and ionic strength, providing a biomimetic scaffold capable of hydroxyapatite nucleation, promoting repair. Our aim was to determine the effect of an anionic peptide applied to caries-like lesions in human dental enamel under simulated intra-oral conditions of pH cycling. Peptide treatment significantly increased net mineral gain by the lesions, due to both increased remineralization and inhibition of demineralization over a five-day period. The assembled peptide was also capable of inducing hydroxyapatite nucleation de novo. The results suggest that self-assembling peptides may be useful in the modulation of mineral behavior during in situ dental tissue engineering.
Determination of the structure of human plaque will be of great benefit in the prediction of its formation and also the effects of treatment. However, a problem lies in the harvesting of undisturbed intact plaque samples from human volunteers and the viewing of the biofilms in their natural state. In this study, we used an in situ device for the in vivo generation of intact dental plaque biofilms on natural tooth surfaces in human subjects. Two devices were placed in the mouths of each of eight healthy volunteers and left to generate biofilm for 4 days. Immediately upon removal from the mouth, the intact, undisturbed biofilms were imaged by the non-invasive technique of confocal microscopy in both reflected light and fluorescence mode. Depth measurements indicated that the plaque formed in the devices was thicker round the edges at the enamel/nylon junction (range = 75-220 microm) than in the center of the devices (range = 35-215 microm). The reflected-light confocal images showed a heterogeneous structure in all of the plaque biofilms examined; channels and voids were clearly visible. This is in contrast to images generated previously by electron microscopy, suggesting a more compact structure. Staining of the biofilms with fluorescein in conjunction with fluorescence imaging suggested that the voids were fluid-filled. This more open architecture is consistent with recent models of biofilm structure from other habitats and has important implications for the delivery of therapeutics to desired targets within the plaque.
SJ. Shore RC, Kirkham J: The developing enamel matrix: nature and function . Eur J Oral Sci 1998; 106 (supp/1 ): 282-291. Eur J Oral Sci, 1998 The hydroxyapatite crystals of mature enamel are unusually large, uniform and regularly disposed within the tissue, implying that their development is a highly controlled process. The organic matrix of developing enamel is presumed to play an important role in the modu lation of mineral deposition and growth during tooth morphogenesis but the precise functions of individual matrix proteins remain unclear. The aim of this rev iew was to survey the current knowledge of enamel matrix proteins with a view to suggesting possible functions. The organic matrix is highly heterogeneous, comprising protein derived from a number of different genes, including amelogenin, enamelin, ameloblastin (amelin/sheathlin), tuftelin, dentine sialophosphoprotein, enzymes and serum proteins such as albumin. Each of these classes appears to undergo post-secretory sequentia l degradation which contributes further towards matrix heterogeneity. Possible functions of these proteins include de novo minera l nucleation/ initiation (dentine sialophosphoproteir1, tuftelin), mineral ion binding as crystal precursors (amelogenin, enamelin), contro l of crystal growth (amelogenin, enamelin, ameloblastin), support of growing crystals (amelogenin, enamelin), determination of prismatic structure (ameloblastin) , cell signalling (tuftelin, ameloblastin), control of secretion (breakdown products) and protection of the mineral phase (amelogenin, enamelin). Failure of these mechanisms could lead to incomplete maturation of the enamel and the eruption of dysplastic tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.