The field experiments were conducted at Agronomy Main Research Farm, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India during rabi (November–March) seasons of 2019–2020 and 2020–2021 to evaluate direct and residual effect of nutrient management and rice establishment methods on phenology, growing degree days, growth, yield and economics of groundnut in rice–groundnut cropping system. The experiments were laid out in split-plot design with three replications. Carryover effect of direct seeding rice favourably influenced the succeeding groundnut crop as compared to that grown after transplanting which had superior growth parameters resulting in 25.7% higher pod yield, oil yield (1.24 t ha-1), gross return (` 136612.7 ha-1) and net return (` 63965.0 ha-1). Residual effect of organic management to preceding rice significantly increased growth, yield attributes, growing degree days at physiological maturity and net return, resulted in highest pod yield of 2.48 t ha-1 in groundnut which was at par with that grown after INM in rice, but was on an average, 17.0% higher than inorganic practice in rice. INM to groundnut increased yield parameters and economics of the crop resulting in 19.7 and 39.3% higher pod yields than 100% and 75% soil test based fertiliser, respectively. Hence, INM under direct seeding to kharif rice benefits the succeeding groundnut crop and direct application of 75% STBN (inorganic)+25% STBN (FYM)+0.2 LR+biofertilisers to groundnut proved beneficial for improving phenology, growing degree days, growth, yield and economics of groundnut in rice–groundnut cropping system.
Continuous mono-cropping of rice has resulted in decline or stagnation of yield output due to the occurrence of multiple nutrient deficiencies and worsening of soil physicochemical properties accompanying increased pressure of insect pests and diseases. The basic concept of integrated nutrient management (INM) is maintenance or adjustment of soil fertility and supply of plant nutrients to an optimum level for sustaining the desired crop productivity through optimisation of benefits from all possible sources of plant nutrients in an integrated way. Augmenting a rice-based cropping system with pulses is a prevalent and indigenous cropping system under rainfed conditions. Considering the above facts, experiments were conducted to evaluate the impacts of integrated nutrient management on productivity of aromatic rice–greengram cropping system and nutrient balance of the post-harvest soil for agricultural sustainability under rainfed conditions in two consecutive years (2017–2018 and 2018–2019) with six main plots and three subplots. The experimental findings revealed that the treatment comprised of 50% recommended dose of fertiliser (RDF) through chemicals + 50% recommended dose of nitrogen (RDN) through farmyard manure (FYM) increased the plant height, tillers, dry matter accumulation, leaf area and leaf area duration, and yield parameters in short grain aromatic rice. Similarly, preceding application of 50% RDF + 50% RDN through FYM to rice and further application 75% RDF + Rhizobium+ phosphate solubilizing bacteria (PSB) to greengram increased the growth characteristics and yield parameters—such as pods/plant, seeds/pod, grain yield, stover yield, and harvest index—in greengram. It was concluded that the treatment consisting of 50% RDF (chemical fertiliser) + 50% RDN (FYM) to rice and 75% RDF + Rhizobium + PSB to greengram increased the productivity of the rice–greengram cropping system. Furthermore, the adoption of INM has positively impacted post-harvest soil nutrient balance.
Cassava (Manihot esculenta) belonging to the family Euphorbiaceae, is one of the most important tuber crops cultivated extensively in tropical and subtropical regions of Africa and Asia. It is a cross pollinating crop with a diploid number of chromosome 2n=36 and DNA content of 1.67pg per cell. It is highly heterozygous, monoecious and protogynous in nature. The tuberous crop is propagated vegetatively by means of stem cuttings and sexually through seeds. According to Food and Agriculture Organization Corporate Statistical Database (FAOSTAT, 2017), the global cassava production was estimated to be 291992646 tonnes in which 61% is accounted by Africa, 29.3% contributed by Asia and remaining 9.6% by America. Indian cassava production was accounted to be 42 mt from an area of 199 mha with a productivity of 2,09,598 hg ha-1. Cassava is mainly used as food and also as an important raw material for various industrial purposes. The wide acceptability of cassava in the world is increasing due to the broad agro-ecological adaptability, its ability to mitigate unfavourable environmental condition and its abilities to produce reasonable yield. Cassava production is always challenged Article History
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.