Recent images of the disks of dust around the young stars HR 4796A (Jayawardhana et al. 1998;Koerner et al. 1998;Schneider et al. 1999;Telesco et al. 1999) and Fomalhaut (Holland et al. 1998) show, in each case, a double-lobed feature that may be asymmetric (one lobe may be brighter than the other). A symmetric double-lobed structure is that expected from a disk of dust with a central hole that is observed nearly edge-on (i.e., close to the plane of the disk). This paper shows how the gravitational influence of a second body in the system with an eccentric orbit would cause a brightness asymmetry in such a disk by imposing a "forced eccentricity" on the orbits of the constituent dust particles, thus shifting the center of symmetry of the disk away from the star and causing the dust near the forced pericenter of the perturbed disk to glow. Dynamic modeling of the HR 4796 disk shows that its ∼ 5% brightness asymmetry could be the result of a forced eccentricity as small as 0.02 imposed on the disk by either the binary companion HR 4796B, or by an unseen planet close to the inner edge of the disk. Since it is likely that a forced eccentricity of 0.01 or higher would be imposed on a disk in a system in which there are planets, but no binary companion, the corresponding asymmetry in the disk's structure could serve as a sensitive indicator of these planets that might otherwise remain undetected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.