Pineal opsin (P-opsin), an opsin from chick that is highly expressed in pineal but is not detectable in retina, was cloned by the polymerase chain reaction. It is likely that the P-opsin lineage diverged from the retinal opsins early in opsin evolution. The amino acid sequence of P-opsin is 42 to 46 percent identical to that of the retinal opsins. P-opsin is a seven-membrane spanning, G protein-linked receptor with a Schiff-base lysine in the seventh membrane span and a Schiff-base counterion in the third membrane span. The primary sequence of P-opsin suggests that it will be maximally sensitive to approximately 500-nanometer light and produce a slow and prolonged phototransduction response consistent with the nonvisual function of pineal photoreception.
We have used an in vitro model system of the circadian clock, dispersed chick pineal cells, to examine the effects of temperature on the circadian clock of a homeotherm. This preparation enabled us to isolate a circadian clock from in vivo homeostatic temperature regulation and expose cells to both constant temperatures and abrupt temperature changes. By manipulating the temperature of the pineal cells, we have demonstrated that (1) the circadian clock compensates its period for temperature changes over the range of 34-40 degrees C; Q10 = 0.83, a value within the range of Q10 values measured for poikilothermic circadian clocks; (2) temperature pulses (42 degrees C, 6 hr duration) shift the phase (advance and delay) of the circadian rhythm in a phase-dependent manner; and (3) a temperature cycle (18 hr at 37 degrees C, 6 hr at 42 degrees C) will entrain the circadian clock in vitro. This is the first demonstration of temperature entrainment of the circadian clock of a homeotherm in vitro. In addition we have found that temperature directly influences the synthesis and release of melatonin, the primary hormonal product of the pineal gland. The biosynthesis of melatonin is strongly temperature dependent with a Q10 > 11 when melatonin release is measured at ambient temperatures between 31 degrees C and 40 degrees C. In contrast, 6 hr 42 degrees C temperatures pulses acutely inhibit melatonin release in a manner similar to that seen previously with light pulses. These results demonstrate that a circadian clock from a homeothermic vertebrate is temperature compensated, yet temperature cycles can entrain the circadian melatonin rhythm. Thus, the chick pineal circadian oscillator has retained all the fundamental properties of circadian rhythms.
The site (intraocular vs. extraocular) of the biological clock driving a rhythm in melatonin content in the eyes of Japanese quail was investigated by alternately patching the left and right eyes of individual birds, otherwise held in constant light, for 12-hr periods. This patching protocol, therefore, exposed each eye to a light-dark cycle (LD 12:12) 180 degrees (12 hr) out of phase with the LD cycle experienced by the other eye. The optic nerves to both eyes were transected prior to initiating the patching protocol. The ocular melatonin rhythm (OMR) of the left eyes of quail could be entrained by this procedure 180 degrees out of phase with the rhythm expressed by the right eyes. Since optic nerve section would have deprived any putative extraocular clocks of photic entrainment information, the results show conclusively that the clock driving the OMR is located within the eye itself. In addition, the OMR of Japanese quail is remarkably unaffected by removing two potential neural inputs to the eye (sympathetic innervation from the superior cervical ganglia, and input from the isthmo-optic nucleus of the midbrain); this suggests that these inputs are not required to maintain the OMR. Finally, the clock driving the OMR of one eye does not appear to be coupled to the clock driving the OMR in the other eye, since permanently patching one eye abolished the ability of the patched eye to re-entrain to an 8-hr shift in the phase of an LD 12:12 cycle, whereas the exposed eye rapidly re-entrained to the phase-shifted cycle.
Most laboratory mouse strains including C57BL/6J do not produce detectable levels of pineal melatonin owing to deficits in enzymatic activity of arylalkylamine N-acetyltransferase (AANAT) and Nacetylserotonin O-methyl transferase (ASMT), two enzymes necessary for melatonin biosynthesis. Here we report that alleles segregating at these two loci in C3H/HeJ mice, an inbred strain producing melatonin, suppress the circadian period-lengthening effect of the Clock mutation. Through a functional mapping approach, we localize mouse Asmt to chromosome X and show that it, and the Aanat locus on chromosome 11, are significantly associated with pineal melatonin levels. Treatment of suprachiasmatic nucleus (SCN) explant cultures from Period2 Luciferase (Per2 Luc ) Clock/+ reporter mice with melatonin, or the melatonin agonist, ramelteon, phenocopies the genetic suppression of the Clock mutant phenotype observed in living animals. These results demonstrate that melatonin suppresses the Clock/+ mutant phenotype and interacts with Clock to affect the mammalian circadian system.C ircadian (from the Latin, meaning about a day) rhythms of biochemistry and physiology are innate to virtually all life forms (1, 2). Cell autonomous circadian pacemakers drive these rhythms and synchronize them each day to environmental cues. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus contains the central pacemaker that coordinates the local circadian clocks present in tissues throughout the body (3, 4). The molecular clock mechanism within individual cells is composed of transcriptional/translational feedback loops and posttranslational processes (1, 5). The bHLH-PAS transcription factors CLOCK and BMAL1 form the primary loop as they activate transcription of the Period (Per1 and Per2) and Cryptochrome (Cry1 and Cry2) genes (1, 6). The PER and CRY proteins subsequently feed back to abrogate their own transcription by directly inhibiting the CLOCK:BMAL1 complex. A second feedback loop stabilizes the primary loop and is composed of REV-ERBα and RORa, two retinoic acid-related orphan receptors, which repress and activate, respectively, transcription of Bmal1. Whereas approximately a dozen genes involved in this timekeeping system have been identified in mammals, it is clear that other, as-yet unknown genes regulate key properties of circadian rhythms (7,8).The SCN imparts daily entraining signals to circadian clocks in cells of peripheral tissues via neural connections and humoral factors (9, 10). One well-characterized circadian rhythm synchronized by the SCN is the synthesis and release at night of the lipophilic pineal hormone melatonin (11). Light information reaches the mammalian pineal gland through a multisynaptic pathway that begins with intrinsically photosensitive melanopsin-containing retinal ganglion cells, which project to the SCN via the retinohypothalamic tract, and ultimately terminates at sympathetic afferents of the pineal gland (12, 13). Lesions of the SCN abolish the melatonin circadian rhythm (14). Two high-affi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.