The use of growth modifiers in natural, biological, and synthetic crystallization is a ubiquitous strategy for controlling growth and achieving desired physicochemical properties. For crystals that grow classically (i.e., monomer-by-monomer addition), theories of crystallization are well established and the field of growth modification is rather mature, although many questions remain regarding the molecular driving forces of modifier–crystal interactions. A new frontier in crystallization is the application of classical methods to tailor materials that grow nonclassically (i.e., growth by the addition of species more complex than monomers). A recent surge of interest and activity in this field has been driven by mounting evidence of both inorganic and organic materials that grow via nonclassical pathways. In these systems, the challenge of elucidating the mechanism(s) of crystallization is underscored by a diversity of growth units that far outnumber those available for classical routes. In this Perspective, we discuss growth modification in nonclassical crystallization, including examples in the literature, the challenges associated with elucidating the modes of modifier action, and to what degree classical theories can be applied to these complex problems as a means of establishing versatile blueprints for crystal engineering.
The formation of amorphous bulk phases in zeolite synthesis is a common phenomenon, yet there are many questions pertaining to the physicochemical properties of these precursors and their putative role(s) in the growth of microporous materials. Here, we study the formation of zeolite L, which is a large-pore framework (LTL type) with properties that are well-suited for catalysis, separations, photonics, and drug delivery, among other applications. We investigate the structural and morphological evolution of aluminosilicate precursors during zeolite L crystallization using a variety of colloidal and microscopy techniques. Dynamic light scattering measurements of growth solutions and scanning electron microscopy (SEM) images of extracted solids collectively reveal that zeolite L precursors assemble through a series of steps, leading to branched worm-like particles (WLPs). Transmission electron microscopy and electron dispersion spectroscopy show that WLPs have a heterogeneous composition that predominantly consists of silica-rich domains. We demonstrate that static light scattering can be used to identify the approximate induction time and is a reliable method to quantitatively track the extent of crystallization. During the induction period, the average size of zeolite L precursors monotonically increases by the accretion of soluble species. Precursor growth continues until the onset of zeolite L nucleation when WLPs reach a maximum size. During zeolite L growth, the number density of precursors decreases in favor of a growing population of crystallites. Ex situ SEM images reveal the progressive formation of crystal nuclei, which deviates from the classical LaMer process that posits a nearly instantaneous generation (or burst) of nuclei. These findings provide evidence of zeolite L growth via a nonclassical pathway involving crystallization by particle attachment (CPA). Given the ubiquitous presence of WLP-like precursors in syntheses of numerous zeolites, CPA processes may prove to be broadly representative of growth mechanisms for other zeolite framework types and related materials.
A combination of bulk crystallization studies and molecular modelling are used to elucidate the role of dual inorganic/organic SDAs in ZSM-5 synthesis. Our findings reveal unexpected synergistic effects on crystallization times and physicochemical properties.
Here we summarize our recent findings in the area of zeolite synthesis, focusing on pathways to control crystallization in the absence of organics, tailoring crystal habit with growth modifiers, and pioneering techniques in zeolite surface science to elucidate the mechanisms of growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.