Archaea have been the most overlooked and enigmatic of the three domains of life for decades. Knowledge of key ecological interactions such as trophic links between this domain and higher level organisms remains extremely limited. The co-occurrence of halophilic Archaea (haloarchaea) and the non-selective filter feeder, brine shrimp Artemia under the unique ecological characteristics of hypersaline aquatic environments, constitutes an excellent opportunity to further unravel the ecological role of the Archaea domain as a source of food to zooplankton metazoans. In the present study, we combine the use of haloarchaea biomass assimilation experiments using 13C isotope as tracer, with gnotobiotic Artemia culture tests using haloarchaea mono-diets, to investigate potential trophic links between the organisms. Our results demonstrated the ability of Artemia to assimilate nutrients from mono-diets of haloarchaea biomass in order to survive and grow, providing clear indications that archivory may occur in hypersaline aquatic environments. Additionally, our study highlights the use of stable isotopes labelling as a potential tool to further disentangle the specific pathways by which archaeal cellular constituents are digested by consumers.
The brine shrimp Artemia is an interesting experimental system for studies of developmental processes. Hatching of dormant cysts gives rise to shrimp larvae called nauplii, characterized by numerous naupliar stages representing the first forms of brine shrimp life cycle. Here combined Thin Layer Chromatography (TLC) and Matrix-Assisted Laser Desorption Ionization-Time-of-Flight/Mass Spectrometry (MALDI-TOF/MS) analyses have been performed to gain information on the lipid profiles of cysts and two naupliar stages. Lipid bands isolated after preparative TLC of the lipid extracts have been analyzed to detect various species of each lipid class; in addition Post-Source Decay (PSD) analyses allowed the identification of phospholipid chains. We compared the relative abundance of various polar and neutral lipid species in the lipid extracts, proving for the first time that during the development of nauplii there is an increase of cardiolipin (CL) and lysophospholipid levels; in parallel, the amount of phosphatidylcholine (PC) decreases. In addition, as regards neutral lipids, we found an increase of diacylglycerols (DAGs) in correspondence of the decrease of triacylglycerols (TAGs). Data reflect the fact that naupliar stages, being an active form of life, are more metabolically active and offer a platform to develop further studies on the importance of lipid metabolic pathways and bioactive lipids during the development.
This work constitutes the first assessment of tributyltin (TBT) pollution levels in the Republic of Cabo Verde (Africa) and proposes the marine gastropod Gemophos viverratus (Kiener, 1834) as a new bioindicator of TBT pollution in the Macaronesia and west coast of Africa. Specimens were collected between August and October 2012 along a gradient of naval traffic in São Vicente Island. The results clearly indicate an increase of imposex levels (percentage of females affected with imposex, 0-100 %; vas deferens sequence index, 0-4.1; relative penis length index, 0-54.6 %) and female TBT contamination (from 5 to 37 ngSn g(-1) dry weight (dw)) from outside to inside the harbour of Porto Grande Bay and identify this area as the focus of TBT pollution in the island. The butyltin degradation index for G. viverratus tissues ranged between 1.3 and 2.2, which being above 1 suggests that a considerable part of TBT inputs to the bay may not be very recent. Sterile females were found inside the harbour with an incidence up to 21.4 %. Considering the existence of a planktonic veliger stage in the life cycle of G. viverratus, it is expected that recruitment of newborn individuals can be supplied from unaffected breeding females inside and outside the Porto Grande Bay, resulting in a reduced impact of TBT pollution on population abundance. G. viverratus is very promising to be used as a simple, inexpensive and efficient novel tool for TBT pollution biomonitoring in the Macaronesia and west coast of Africa, a region for which there is an astonishing lack of information concerning levels and ecological impacts of TBT pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.