For Ras oncoproteins to transform mammalian cells, they must be post-translationally modified with a farnesyl group in a reaction catalysed by the enzyme farnesyl-protein transferase (FPTase). Inhibitors of FPTase have therefore been proposed as anti-cancer agents. We show that L-744,832, which mimics the CaaX motif to which the farnesyl group is added, is a potent and selective inhibitor of FPTase. In MMTV-v-Ha-ras mice bearing palpable tumours, daily administration of L-744,832 caused tumour regression. Following cessation of treatment, tumours reappeared, the majority of which regressed upon retreatment. No systemic toxicity was found upon necropsy of L-744,832-treated mice. This first demonstration of anti-FPTase-mediated tumour regression suggests that FPTase inhibitors may be safe and effective anti-tumour agents in some cancers.
The posttranslational addition of a farnesyl moiety to the Ras oncoprotein is essential for its transforming activity. Cell-active inhibitors of the enzyme that catalyzes this reaction, protein farnesyltransferase, have been shown to selectively block ras-dependent transformation of cells in culture. Here we describe the protein farnesyltransferase inhibitor
A microbial screen using a yeast strain with conditional deficiency in the GPA1 gene was carried out to search for inhibitors of protein farnesyltransferase (PFT). A strain of Streptomyces was found to produce active compounds named UCF1-A, UCF1-B, and UCF1-C. Structural determination of these compounds revealed that UCF1-C is identical to the known antibiotic, manumycin, whereas UCF1-A and UCF1-B are structurally related to manumycin. All three UCF1 compounds suppress the lethality of gpa1 disruption, with UCF1-C exhibiting the strongest activity. UCF1 inhibits yeast as well as rat brain PFT. Fifty percent inhibition of yeast PFT activity is observed with 5 microM UCF1-C. Kinetic analyses of the inhibition suggest that UCF1-C acts as a competitive inhibitor of PFT with respect to farnesyl pyrophosphate, exhibiting a Ki of 1.2 microM, whereas the same compound appears to act as a noncompetitive inhibitor of PFT with respect to the farnesyl acceptor, the Ras protein. UCF1-C shows significant activity to inhibit the growth of Ki-ras-transformed fibrosarcoma, raising the possibility of its use as an antitumor drug.
Protein farnesyltransferase (FTase) catalyses the addition of a farnesyl group to a cysteine within the so-called ‘CAAX box’ at the C-terminus of various proteins. In the present paper we report purification of Saccharomyces cerevisiae FTase to near-homogeneity. This was accomplished by constructing a yeast strain overproducing FTase approx. 100-fold. The purified enzyme was a heterodimer of approx. 90 kDa and consisted of 43 kDa and 34 kDa subunits. The 43 kDa subunit was shown to be the product of the DPR1 gene by using antibody raised against baculovirus-produced DPR1 polypeptide. The purified enzyme required Mg2+, showed a pH optimum of 7.8 and was most active at 50 degrees C. The Km values for farnesyl pyrophosphate and GST-CIIS (glutathione S-transferase fused to the C-terminal 12 amino acids of yeast RAS2 protein), KmFpp and KmGST CIIS, were 8.1 and 5.1 microM respectively. The enzyme was capable of farnesylating GST-CIIL (the same as GST-CIIS, except that the C-terminal serine is changed to leucine), a substrate protein for the enzyme geranylgeranyltransferase, although with a higher apparent Km than for GST-CIIS. Like its mammalian counterpart, yeast FTase activity was inhibited by peptides containing the C-terminal CAAX sequence (that is, one where C = cysteine, A = aliphatic amino acid and X = any amino acid). These results provide direct evidence for the idea that the yeast and mammalian FTases are structurally and functionally very similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.