The tomato yellow leaf curl virus (TYLCV) gene that encodes the capsid protein (V1) was placed under transcriptional control of the cauliflower mosaic virus 35S promoter and cloned into an Agrobacterium Ti-derived plasmid and used to transform plants from an interspecific tomato hybrid, Lycopersicon esculentum X L. pennellii (F1), sensitive to the TYLCV disease. When transgenic F1 plants, expressing the V1 gene, were inoculated with TYLCV using whiteflies fed on TYLCV-infected plants, they responded either as untransformed tomato or showed expression of delayed disease symptoms and recovery from the disease with increasingly more resistance upon repeated inoculation. Transformed plants that were as sensitive to inoculation as untransformed controls expressed the V1 gene at the RNA level only. All the transformed plants that recovered from disease expressed the TYLCV capsid protein.
A previously uncharacterized virus was isolated from fall-planted sweet corn (Zea mays L., Syngenta GSS 0966) leaves showing fine chlorotic streaks. Symptomatic plants were negative in enzyme-linked immunosorbent assay against many maize viruses, but reacted weakly with antisera to Sorghum stunt mosaic virus suggesting a distant relationship between the viruses. The virus was readily transmitted by vascular puncture inoculation (VPI), but not by leaf-rub inoculation. Symptoms on maize included dwarfing and fine chlorotic streaks along intermediate and small veins that developed 12 to 17 days post-VPI. The isolated virus was bacilliform (231 +/- 5 nm long and 71 +/- 2 nm wide), with a knobby surface, and obvious helical structure typical of rhabdovirus morphology. Nucleorhabdovirus virions were observed by transmission electron microscopy of infected maize leaf tissue sections. Proteins unique to infected plants were observed in extracts of infected leaves, and the isolated virion contained three proteins with molecular masses 82 +/- 2, 50 +/- 3, and 32 +/- 2 kDa. Preliminary sequence analysis indicated the virus had similarity to members of the family Rhabdoviridae. The virus was transmitted by Graminella nigrifrons under persistent conditions. The data indicate the virus, provisionally designated Maize fine streak virus, is a new species in the genus Nucleorhabdovirus.
A potyvirus (proposed name of Zea mosaic virus [ZeMV]) isolated from maize in Israel was analyzed by serology, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of capsid proteins, symptomatology, and sequencing. Parts of the nuclear inclusion b, coat protein, and 3' regions were sequenced; the amino acid sequence of ZeMV capsid was determined by time-of-flight mass spectrometry (TOFMS). The results of these analyses were compared with those of similar analyses of the following potyviruses: Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus strain MDB (SCMV-MDB), Johnsongrass mosaic virus(JGMV), Sorghum mosaic virus (SrMV), and an isolate of MDMV from Israel. Indirect enzyme-linked immunosorbent assay using ZeMV antiserum detected only ZeMV, and reciprocal tests using MDMV, JGMV, or SrMV antisera failed to detect ZeMV. ZeMV cross-reacted weakly when SCMV-MDB antiserum was used. The mass of ZeMV capsid was determined to be 36,810 Da by SDS-PAGE and 34,216 Da by TOFMS. The ZeMV systemically infected johnsongrass (Sorghum halepense), but did not infect oat (Avena sativa), pearl millet (Pennisetum glaucum), barley (Hordeum vulgare), or rye (Secale cereale). Necrosis was caused in 19 sorghum lines by SrMV, in 15 by ZeMV, in 14 by MDMV, and in 5 by JGMV and SCMV-MDB. The nucleic acid and amino acid sequences of ZeMV clearly showed that it is not a strain of JGMV, MDMV, SCMV, or SrMV.
During March 1997, 20 to 30% of field-grown onion (Allium cepa), observed in Bet Shean Valley, Israel, had unusual viral symptoms of straw-colored ringspots on leaves and flower stalks. Leaf samples were analyzed by transmission electron microscopy (EM) of leaf dip preparations. Typical tospovirus-like particles were observed only with samples taken from symptomatic plants. Crude sap from symptomatic tissue was mechanically transmitted to Nicotiana benthamiana, Chenopodium quinoa, and Gomphrena globosa. On inoculated plants of N. benthamiana, chlorotic spots developed on inoculated leaves, followed by systemic necrosis, 4 and 7 days post inoculation (DPI), respectively. On inoculated plants of C. quinoa and G. globosa, necrotic local lesions developed by 4 to 5 DPI. EM studies with ultrathin sections of infected onion and N. benthamiana leaves revealed the presence of tospovirus-like particles. Virus was purified from mechanically infected N. benthamiana and identified as Iris yellow spot tospovirus (IYSV) by Western blots (immunoblots) and enzyme-linked immunosorbent assay (ELISA) (anti-IYSV antiserum was provided by D. Peters, Wageningen, the Netherlands). A high incidence of the disease observed in the surrounding fields and in other onion-growing areas in Israel was associated with large populations of the onion thrips (Thrips tabaci). Although characteristic symptoms have been noted on a frequent basis, effects on yield have yet to be determined. IYSV is known to occur in the Netherlands, where it has been occasionally detected in Iris (1) and leek (A. Porrum) (J. Verhoeven, personal communication). The detection of IYSV in Israel and the wide distribution of thrips in the natural vegetation may be an important constraint on onion and other bulb-crop production in Israel. Reference: (1) A. F. L. M. Derks and M. E. C. Lemmers. Acta Hortic. 432:132, 1996.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.