High precision and reliable wind speed forecasting have become a challenge for meteorologists. Convective events, namely, strong winds, thunderstorms, and tornadoes, along with large hail, are natural calamities that disturb daily life. For accurate prediction of wind speed and overcoming its uncertainty of change, several prediction approaches have been presented over the last few decades. As wind speed series have higher volatility and nonlinearity, it is urgent to present cutting-edge artificial intelligence (AI) technology. In this aspect, this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning (IWSP-CSODL) method. The presented IWSP-CSODL model estimates the wind speed using a hybrid deep learning and hyperparameter optimizer. In the presented IWSP-CSODL model, the prediction process is performed via a convolutional neural network (CNN) based long short-term memory with autoencoder (CBLSTMAE) model. To optimally modify the hyperparameters related to the CBLSTMAE model, the chicken swarm optimization (CSO) algorithm is utilized and thereby reduces the mean square error (MSE). The experimental validation of the IWSP-CSODL model is tested using wind series data under three distinct scenarios. The comparative study pointed out the better outcomes of the IWSP-CSODL model over other recent wind speed prediction models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.