Sparse Voxel Directed Acyclic Graphs (SVDAGs) losslessly compress highly detailed geometry in a high-resolution binary voxel grid by identifying matching elements. This representation is suitable for high-performance real-time applications, such as free-viewpoint videos and high-resolution precomputed shadows. In this work, we introduce a lossy scheme to further decrease memory consumption by minimally modifying the underlying voxel grid to increase matches. Our method efficiently identifies groups of similar but rare subtrees in an SVDAG structure and replaces them with a single common subtree representative. We test our compression strategy on several standard voxel datasets, where we obtain memory reductions of 10% up to 50% compared to a standard SVDAG, while introducing an error (ratio of modified voxels to voxel count) of only 1% to 5%. Furthermore, we show that our method is complementary to other state of the art SVDAG optimizations, and has a negligible effect on real-time rendering performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.