A sorption thermal energy storage (TES) device for domestic heating is presented in this article. The TES device adopts the new design scenario with valve-less adsorber and separate reservoir to eliminate the largediameter vacuum valve for vapor flow, which decreases the cost, reduces the vapor flow resistance, and improves the system reliability. The device is charged by the electric heater, which can add much flexibility to the building energy system as well as contribute to the valley filling and peak shaving from demand side management. The newly developed composite sorbent of zeolite 13X/MgSO4/ENG-TSA (expanded natural graphite treated with sulfuric acid) with the salt mass fraction of 15% in the zeolite 13X/MgSO4 mixture is tested and used in the TES device (denoted as XM15/ENG-TSA). Experimental results show that the TES device with XM15/ENG-TSA has the energy storage density of 120.3 kWh•m −3 at 250°C charging temperature and 25-90°C discharging temperature. The temperature lift is as high as 65-69°C with the adsorption and evaporating temperatures of 25°C. The impregnation of MgSO4 dramatically improves the temperature rising rate during the adsorption heat recovery process, but the specific energy storage capacity of XM15/ENG-TSA is similar to that of zeolite 13X/ENG-TSA. The effect of the impregnated MgSO4 suggests that MgSO4 can be used for low-temperature TES to relieve the self-hindrance of the hydration reaction.
The composite sorbents of MgSO4-impregnated zeolite 13X and activated alumina are developed for thermal energy storage (TES) with different temperature ranges. The sorption and desorption characteristics of raw and MgSO4-impregnated activated alumina are studied, and the performances of the selected sorbents are tested in a closed-system TES device. The results are compared with those of raw and MgSO4-impregnated zeolite 13X. It is shown that the impregnated MgSO4 improves the overall TES performances of zeolite 13X and activated alumina. Compared to the raw host matrices, the impregnated MgSO4 remarkably accelerates the temperature-rising rate of zeolite 13X to about three times and improves the temperature lift of activated alumina by 32.5%. The experimental energy storage densities of MgSO4-impregnated zeolite 13X and activated alumina are 123.4 kWh m −3 and 82.6 kWh m −3 , respectively. The sorption temperature region of activated alumina is more aligned with the preferred hydration temperature of MgSO4 in comparison with zeolite 13X. The hydration characteristics of MgSO4 can resolve the solution leakage issue of open systems.Thermodynamic analysis is conducted to evaluate the performances of the TES device with different sorbents.It is found that entransy can be used to assess thermally and electrically driven TES systems reasonably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.