Based on performance of feedlot cattle, steam flaking increases the value of corn by 18%, considerably more than is suggested by tabular values. Tabular values underestimate the energy availability of flaked corn by failing to account for digestibility of the nonstarch OM that is increased by flaking by the same magnitude (10%) as starch. Correcting for improvement in digestibility of nonstarch OM increases the NEg value of steam-flaked corn to 1.70 Mcal/kg, a value very close to values calculated from cattle performance trials. Digestibility of starch from corn grain is limited by the protein matrix that encapsulates starch granules, and by the compact nature of the starch itself. Disruption of the protein matrix (by shear forces on hot grain during flaking) is the first limiting step toward optimizing starch digestion. Five critical production factors influence the quality of steam-flaked corn: steam chest temperature, steaming time, roll corrugation, roll gap, and roll tension. For optimal shear, it is important that rolls be hot and that kernels be hot when flaked. Steam chests should be designed to allow a steaming time of at least 30 min at maximum roller mill capacity producing a flake of 0.31 kg/L (24 lb/bushel). As little as 5% moisture uptake during steaming appears adequate. The rate of flaking and distribution of kernels across the rolls also are critical. Quality standards for steam-flaked corn include measurements of flake thickness, flake density, starch solubility, and enzyme reactivity. Flake density, the most common quality standard, closely associated with starch solubility (r2 = 0.87) and enzyme reactivity (r2 = 0.79), still explains only 63% of the variability in percentage fecal starch and 52% of the variability in starch digestibility. Direct determination of fecal starch can explain 91% of the variability in starch digestion. The NEg value of corn can be predicted from fecal starch: NEg= 1.78 - 0.0184FS. Starch digestion is a Kappa Curve function of hot flake density, reaching a maximum at a flake density of approximately 0.31 kg/L. Flaking to a density of less than 0.31 kg/L, though increasing starch solubility, may reduce DMI, increase variability of weight gain among animals within a pen, and predispose cattle to acidosis and bloat without increasing starch digestion. We recommend that the steam-flaking process be optimized on the basis of fecal starch analysis.
Four Holstein steers (282 kg) with cannulas in the rumen and proximal duodenum were used in a 4 x 4 Latin square experiment to evaluate the influence of dietary urea level (0, 0.4, 0.8, and 1.2%, DM basis) in a steam-flaked barley-based finishing diet on digestive function. There were no treatment effects (P > 0.20) on ruminal digestion of OM and ADF. Increasing dietary urea level increased (linear, P < 0.01) ruminal starch digestion. Ruminal degradability of protein in the basal diet (no supplemental urea) was 60%. Increasing dietary urea level did not increase (P > 0.20) ruminal microbial protein synthesis or nonammonia N flow to the small intestine. There were no treatment effects (P > 0.20) on total-tract ADF digestion. Total tract digestion of OM (quadratic, P < 0.01) and starch (linear, P < 0.05) increased slightly with increasing urea level. Urea supplementation increased (linear, P < 0.01) ruminal pH 1 h after feeding; however, by 3 h after feeding, ruminal pH was lower (cubic, P < 0.05) with urea-supplemented diets. Urea supplementation did not affect (P > 0.20) ruminal molar proportions of acetate and propionate. One hundred twenty crossbred steers (252 kg; approximately 25% Brahman breeding) were used in an 84-d feeding trial (five pens per treatment) to evaluate treatment effects on growth performance. Daily weight gain increased (linear, P = 0.01) with increasing urea level, tending to be maximal (1.53 kg/d; quadratic, P = 0.13) at the 0.8% level of urea supplementation. Improvements in ADG were due to treatment effects (linear, P < 0.01) on DMI. Urea supplementation did not affect (P > 0.20) the NE value of the diet for maintenance and gain. Observed dietary NE values, based on growth performance, were in close agreement with expected based on tabular values for individual feed ingredients, averaging 100.4%. We conclude that with steam-flaked barely-based finishing diets, ruminal and total-tract digestion of OM and ruminal microbial protein synthesis may not be increased by urea supplementation. In contrast, ADG was optimized by dietary inclusion of 0.8% urea. Urea supplementation may not enhance the net energy value of steam-flaked barely-based finishing diets when degradable intake protein is greater than 85% of microbial protein synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.