The Müllerian duct (MD) forms the female reproductive tract (FRT) consisting of the oviducts, uterus, cervix, and upper vagina. FRT function is vital to fertility, providing the site of fertilization, embryo implantation and fetal development. Developmental defects in the formation and diseases of the FRT, including cancer and endometriosis, are prevalent in humans and can result in infertility and death. Furthermore, because the MDs are initially formed regardless of genotypic sex, mesenchymal to epithelial signaling is required in males to mediate MD regression and prevents the development of MD-derived organs. In males, defects in MD regression result in the retention of FRT organs and have been described in several human syndromes. Although to date not reported in humans, ectopic activation of MD regression signaling components in females can result in aplasia of the FRT. Clearly, MD development is important to human health; however, the molecular mechanisms remain largely undetermined. Molecular genetics studies of human diseases and mouse models have provided new insights into molecular signaling during MD development, regression and differentiation. This review will provide an overview of MD development and important genes and signaling mechanisms involved.
Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.
Context:The LHX4 LIM-homeodomain transcription factor has essential roles in pituitary gland and nervous system development. Heterozygous mutations in LHX4 are associated with combined pituitary hormone deficiency.Objectives: Our objectives were to determine the nature and frequency of LHX4 mutations in patients with pituitary hormone deficiency and to examine the functional outcomes of observed mutations. Design:The LHX4 gene sequence was determined from patient DNA. The biochemical and gene regulatory properties of aberrant LHX4 proteins were characterized using structural predictions, pituitary gene transcription assays, and DNA binding experiments. Patients:A total of 253 patients from 245 pedigrees with GH deficiency and deficiency of at least one additional pituitary hormone was included in the study. Results:In five patients, three types of heterozygous missense mutations in LHX4 that result in substitution of conserved amino acids were identified. One substitution is between the LIM domains (R84C); the others are in the homeodomain (L190R; A210P). The patients have GH deficiency; some also display reductions in TSH, LH, FSH, or ACTH, and aberrant pituitary morphology. Structural models predict that the aberrant L190R and A210P LHX4 proteins would have impaired DNA binding and gene activation properties. Consistent with these models, EMSAs and transfection experiments using pituitary gene promoters demonstrate that whereas the R84C form has reduced activity, the L190R and A210P proteins are inactive. A fter early inductive events, the development of the specialized hormone-secreting cells of the anterior pituitary gland is dependent on the actions of multiple transcription factors such as LHX3, LHX4, PIT1 (POU1F1 gene), PROP1, PITX1, PITX2, SF1, and TPIT (1). Of these, the structurally related LHX3 and LHX4 proteins are members of the LIMhomeodomain (HD) family of transcription factors (2). LIM-HD proteins feature two amino-terminal LIM domains, required for Conclusions
The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Mutations in the genes encoding these regulatory proteins are associated with combined hormone deficiency diseases in humans and animal models. Patients with these diseases have complex syndromes involving short stature, and reproductive and metabolic disorders. Analyses of the features of these diseases and the biochemical properties of the LHX3 and LHX4 proteins will facilitate a better understanding of the molecular pathways that regulate the development of the specialized hormone-secreting cells of the mammalian anterior pituitary gland.
In mammals, the developing reproductive tract primordium of male and female fetuses consists of the Wolffian duct and the Müllerian duct (MD), two epithelial tube pairs surrounded by mesenchyme. During male development, mesenchyme-epithelia interactions mediate MD regression to prevent its development into a uterus, oviduct, and upper vagina. It is well established that transforming growth factor-β family member anti-Müllerian hormone (AMH) secreted from the fetal testis and its type 1 and 2 receptors expressed in MD mesenchyme regulate MD regression. However, little is known about the molecular network regulating downstream actions of AMH signaling. To identify potential AMH-induced genes and regulatory networks controlling MD regression in a global nonbiased manner, we examined transcriptome differences in MD mesenchyme between males (AMH signaling on) and females (AMH signaling off) by RNA-seq analysis of purified fetal MD mesenchymal cells. This analysis found 82 genes up-regulated in males during MD regression and identified ()/, a key transcriptional regulator of osteoblast differentiation and bone formation, as a downstream effector of AMH signaling during MD regression. /OSX was expressed in a male-specific pattern in MD mesenchyme during MD regression. OSX expression was lost in mutant males without AMH signaling. In addition, transgenic mice ectopically expressing human AMH in females induced a male pattern of expression. Together, these results indicate that AMH signaling is necessary and sufficient for expression in the MD mesenchyme. In addition, MD regression was delayed in-null males, identifying as a factor that regulates MD regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.