Conventional drug delivery approaches are plagued by issues pertaining to systemic toxicity and repeated dosing. Hydrogels offer convenient drug delivery vehicles to ensure these disadvantages are minimized and the therapeutic benefits from the drug are optimized. With exquisitely tunable physical properties that confer them great controlled drug release features and the merits they offer for labile drug protection from degradation, hydrogels emerge as very efficient drug delivery systems. The versatility and diversity of the hydrogels extend their applications beyond targeted drug delivery also to wound dressings, contact lenses and tissue engineering to name but a few. They are 90% water, and highly porous to accommodate drugs for delivery and facilitate controlled release. Herein we discuss hydrogels and how they could be manipulated for targeted drug delivery applications. Suitable examples from the literature are provided that support the recent advancements of hydrogels in targeted drug delivery in diverse disease areas and how they could be suitably modified in very different ways for achieving significant impact in targeted drug delivery. With their enormous amenability to modification, hydrogels serve as promising delivery vehicles of therapeutic molecules in several disease conditions, including cancer and diabetes.
Conventional drug delivery approaches are plagued by issues pertaining to systemic toxicity and repeated dosing. Hydrogels offer convenient drug delivery vehicles to ensure these disadvantages are minimized and the therapeutic benefits from the drug are optimized. With exquisitely tunable physical properties that confer them great controlled drug release features and the merits they offer for labile drug protection from degradation, hydrogels emerge as very efficient drug delivery systems. The versatility and diversity of the hydrogels extend their applications beyond targeted drug delivery also to wound dressings, contact lenses and tissue engineering to name but a few. They are 90% water, and highly porous to accommodate drugs for delivery and facilitate controlled release. Herein we discuss hydrogels and how they could be manipulated for targeted drug delivery applications. Suitable examples from the literature are provided that support the recent advancements of hydrogels in targeted drug delivery in diverse disease areas and how they could be suitably modified in very different ways for achieving significant impact in targeted drug delivery. With their enormous amenability to modification, hydrogels serve as promising delivery vehicles of therapeutic molecules in several disease conditions, including cancer and diabetes.
Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44 C /CD24 ¡/low . The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.
Conventional drug delivery approaches are plagued by issues pertaining to systemic toxicity and repeated dosing. Hydrogels offer convenient drug delivery vehicles to ensure these disadvantages are minimized and the therapeutic benefits from the drug are optimized. With exquisitely tunable physical properties that confer them great controlled drug release features and the merits they offer for labile drug protection from degradation, hydrogels emerge as very efficient drug delivery systems. The versatility and diversity of the hydrogels extend their applications beyond targeted drug delivery also to wound dressings, contact lenses and tissue engineering to name but a few. They are 90% water, and highly porous to accommodate drugs for delivery and facilitate controlled release. Herein we discuss hydrogels and how they could be manipulated for targeted drug delivery applications. Suitable examples from the literature are provided that support the recent advancements of hydrogels in targeted drug delivery in diverse disease areas and how they could be suitably modified in very different ways for achieving significant impact in targeted drug delivery. With their enormous amenability to modification, hydrogels serve as promising delivery vehicles of therapeutic molecules in several disease conditions, including cancer and diabetes.
Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.