Most studies using intrinsic NAD(P)H as biomarkers for energy metabolism and mitochondrial anomalies have been conducted in routine two-dimensional (2D) cell culture formats. Cellular metabolism and cell behavior, however, can be significantly different in 2D cultures from that in vivo. As a result, there are emerging interests in integrating noninvasive, quantitative imaging techniques of NAD(P)H with in vivo-like threedimensional (3D) models. The overall features and metabolic responses of the murine breast cancer cells line 4T1 in 2D cultures were compared with those in 3D collagen matrix using integrated optical micro-spectroscopy. The metabolic responses to two novel compounds, MD1 and TPPBr, that target metabolism by disrupting monocarboxylate transporters or oxidative phosphorylation (OXPHOS), respectively, were investigated using two-photon fluorescence lifetime imaging microscopy (2P-FLIM) of intracellular NAD(P)H in 2D and 3D cultures. 4T1 cells exhibit distinct behaviors in a collagenous 3D matrix from those in 2D culture, forming anastomosing multicellular networks and spherical acini in 3D culture, as opposed to simple flattened epithelial plaques in 2D culture. The cellular NAD(P)H in 3D collagen matrix exhibits a longer fluorescence lifetime as compared with 2D culture, which is attributed to an enhanced population of enzyme-bound NAD(P)H in the 3D culture. TPPBr induces mitochondrial hyperpolarization in 2D culture of 4T1 cells along with an enhanced free NAD(P)H population, which suggest an interference with OXPHOS. In contrast, 2P-FLIM of cellular NAD(P)H revealed an enhanced autofluorescence lifetime in 3D 4T1 cultures after MD1 treatment as compared with MD1-treated 2D culture and the control 3D culture. Physical and chemical microenvironmental signaling are critical factors in understanding how therapeutic compounds target cancer cells by disrupting their metabolic pathways. Integrating 2P-FLIM of intrinsic NAD(P)H with refined 3D tumor-matrix in vitro models promises to advance our understanding of the roles of metabolism and metabolic plasticity in tumor growth and metastatic behavior. © 2018International Society for Advancement of Cytometry Key terms NAD(P)H; 4T1; 3D collagen matrix; MD1; TPPBr derivative; two-photon microscopy; FLIM CHANGES in cellular metabolism have long been recognized as a fundamental feature, and are now considered a hallmark, of cancer. A resurgent interest in this area has recently been driven in large measure by significant breakthroughs elucidating relevant mechanisms of cross-talk between not only tumor and stromal cells but also between distinct subpopulations of tumor cells themselves within heterogeneous tumors. In particular, advanced metabolic imaging methods promise to significantly enhance our understanding of how specific microenvironmental factors influence the regulation of cancer cell metabolism on a cell-by-cell basis. Overall, it is becoming clear that a better understanding of the metabolic features of cancer cells-and in particular those that may ...
The majority of in vitro studies of living cells are routinely conducted in a two-dimensional (2D) monolayer culture. Recent studies, however, suggest that 2D cell culture promotes specific types of...
Elucidating molecular consequences of amino-acid-altering missense variants at scale is challenging. In this work, we explored whether features derived from three-dimensional (3D) protein structures can characterize patient missense variants across different protein classes with similar molecularlevel activities. The identified disease-associated features can advance our understanding of how a single amino acid substitution can lead to the etiology of monogenic disorders. For 1,330 disease-associated genes (>80%, 1,077/1,330 implicated in Mendelian disorders), we collected missense variants from the general population (gnomAD database, N=164,915) and patients (ClinVar and HGMD databases, N=32,923). We in silico mapped the variant positions onto >14k human protein 3D structures. We annotated the protein positions of variants with 40 structural, physiochemical, and functional features. We then grouped the genes into 24 protein classes based on their molecular functions and performed statistical association analyses with the features of population and patient variants. We identified 18 (out of 40) features that are associated with patient variants in general. Specifically, patient variants are less exposed to solvent (p<1.0e-100), enriched on b-sheets (p<2.37e-39), frequently mutate aromatic residues (p<1.0e-100), occur in ligandbinding sites (p<1.0e-100) and are spatially close to phosphorylation sites (p<1.0e-100). We also observed differential protein-class-specific features. For three protein classes (signaling molecules, proteases and hydrolases), patient variants significantly perturb the disulfide bonds (p<1.0e-100). Only in immunity proteins, patient variants are enriched in flexible coils (p<1.65e-06). Kinases and cell junction proteins exhibit enrichment of patient variants around SUMOylation (p<1.0e-100) and methylation sites (p<9.29e-11), respectively. In summary, we studied shared and unique features associated with patient variants on protein structure across 24 protein classes, providing novel mechanistic insights. We generated an online resource that contains amino-acid-wise feature annotation-track for 1,330 genes, summarizes the patient-variant-associated features on residue level, and can guide variant interpretation. 2078-PosThe Oxidative stress (OS) is an intuitively defined term that depends on the criterion used to evaluate it. The MARK-AGE consortium recently published a thorough investigation of the age dependence of the OS as determined by the steady state concentrations of different biomarkers of OS. Most biomarkers correlate significantly with almost all the other biomarkers but the correlations were weak. The possibility that all these effects are manifestations of one type of OS has yet to be evaluated. We think that the different biomarkers reflect different types of OS. This conclusion accords with two lines of comparison. (i) the overlapping between the lists of OS, as studied by different biomarkers is very low and (2) MDA appears to be sensitive to both gender and age. Specificall...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.