Cyberbullying is a form of bullying that takes place across virtually every social media platform. Twitter is a form of social media that allows users to exchange information. Bullying has been a growing problem on Twitter over the past few years. Sentiment analysis is done to identify the element of bullying in a tweet. Sentiments are divided into 3 classes, namely Bullying, Non-Bullying and neutral. There are three steps to classify cyberbullying i.e. collection of data set, preprocessing data, and classification process. This research used sentiStrength, an algorithm which uses a lexicon based approach. This SentiStrength lexicon contains the weight of its sentiment strength. The assessment results from 454 tweets data obtained 161 tweet non-bullying (35.4%), 87 tweet neutral (19.1%), and 206 tweet bullying (45.4%). This research produces an accuracy value of 60.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.