Individual nanoparticles of silicon and titanium having diameters in the range of 40-140 nm have been repeatedly compressed by a nanoindenter. Even at low loads, the small tip-particle and particle-substrate contacts generate extreme pressures within the confined particle, influencing its stiffness and fracture toughness. The effect of these high pressures on the measured modulus is taken into account by invoking a Murnaghan equation-of-state-based analysis. Fracture toughness of the silicon particles is found to increase by a factor of 4 in compression for a 40-nm-diam particle when compared to bulk silicon. Additionally, strain energy release rates increase by more than an order of magnitude for particles of this size when compared to bulk Si.
Small volume deformation can produce two types of plastic instability events. The first involves dislocation nucleation as a dislocation by dislocation event and occurs in nanoparticles or bulk single crystals deformed by atomic force microscopy or small nanoindenter forces. For the second instability event, this involves larger scale nanocontacts into single crystals or their films wherein multiple dislocations cooperate to form a large displacement excursion or load drop. With dislocation work, surface work, and stored elastic energy, one can account for the energy expended in both single and multiple dislocation events. This leads to an energy balance criterion which can model both the displacement excursion and load drop in either constant load or fixed displacement experiments. Nanoindentation of Fe-3% Si (100) crystals with various oxide film thicknesses supports the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.