MR elastography is a novel imaging technique for the visualization of elastic properties of tissue. It is expected that this method will have diagnostic value for the clarification of suspicious breast lesions. Low-frequency mechanical waves are coupled into the tissue and visualized via an MR sequence which is phase-locked to the mechanical excitation. Commonly, elasticity is assumed to be isotropic and reconstruction is performed in only two dimensions. The technique is extended to three dimensions such that the entire symmetric elasticity tensor is assessed. This is achieved by measuring different phases of the mechanical wave during one oscillatory cycle. Thereby it is possible to provide information about the anisotropy of the elasticity tensor. Finite-element simulations as well as phantom experiments are performed to demonstrate the feasibility of the method. Initial clinical results of a breast carcinoma are presented. The analysis of the eigenvalues of the elasticity tensor support the hypothesis that breast carcinoma might exhibit an anisotropic elasticity distribution. The surrounding benign tissue appears isotropic. Thereby new and additional diagnostic information is provided which might help in distinguishing between benign and malignant breast diseases.
Magnetic resonance elastography (MRE) is a non-invasive imaging technique used to visualise and quantify mechanical properties of tissue, providing information beyond what can be currently achieved with standard MR sequences and could, for instance, provide new insight into pathological processes in the brain. This study uses the MRE technique at 3 T to extract the complex shear modulus for in vivo brain tissue utilizing a full three-dimensional approach to reconstruction, removing contributions of the dilatational wave by application of the curl operator. A calibrated phantom is used to benchmark the MRE measurements, and in vivo results are presented for healthy volunteers. The results provide data for in vivo brain storage modulus (G'), finding grey matter (3.1 kPa) to be significantly stiffer than white matter (2.7 kPa). The first in vivo loss modulus (G'') measurements show no significant difference between grey matter (2.5 kPa) and white matter (2.5 kPa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.