FMRFaraide-related peptides have been isolated from both invertebrates and vertebrates and exhibit a wide range of biological effects in rats. We show here that in humans 2 FMRFamide-related peptides are encoded by a single gene expressed as a spliced mRNA. The larger predicted peptide (AGEGLNSQFWSLAAPQRFamide) differs from the peptide isolated from bovines (AGEGLSSPFWSLAAPQRFamide) by the substitutions of 2 amino acids. The shorter predicted peptide (NPSF, SQAFLFQPQRFamide) is 3 amino acids longer than the bovine 8 amino-acid NPFF (FLFQPQRFamide) or the human NPFF peptide isolated from serum [5], suggesting that the encoded protein is subject to cleavage by a tripeptidyl peptidase or by a novel processing mechanism. On rat spinal cord, the larger peptide is indistinguishable in activity from the equivalent bovine peptide whereas the smaller extended peptide is inactive.© 1997 Federation of European Biochemical Societies.Key words: NPFF; NPAF; FMRFamide; cDNA; Nociception; Human In bovine brain, 3 different forms of immunoreactive material were detected by HPLC separation and the use of an antibody raised against the molluscan peptide FMRF-NH 2 . Two of these correspond to NPFF and NPAF ; the structure of the third is unknown [12]. Similarly, in the rat hypothalamus, NPFFs have been shown to exist by HPLC and immunoreactivity but the predominant form of peptide is not NPFF [13].The isolation of the human gene described here now allows a definitive description of the human FMRFamide peptides. We show that there is an additional 3 amino acids on the human NPFF precursor that must be cleaved to produced biologically active NPFF. If these amino acids are present on the precursor of the bovine and rat NPFF then this could account for the alternate form detected by HPLC. We also demonstrate that human NPAF is capable of modulating neural activity in the rat spinal cord in a manner indistinguishable from that of bovine NPAF while human N-terminally extended NPFF has no activity.
The effects of diet on the histochemical composition of intestinal mucosubstances and the morphology of the villi and crypts were investigated by comparing the data of germ free and conventionally maintained rats fed either a purified diet or a commercial diet. The influence of intestinal microflora was evaluated by comparing the germ free rats and those harbouring either a conventional rat flora or a human microbial flora. In both germ free rats and those maintained conventionally, feeding a purified diet resulted in shallower crypts in the small intestine but deeper crypts in the large intestine compared with their counterparts fed on the commercial diet. The preliminary data obtained with association of human flora showed a reduction ofthe villus height and crypt depth in the small intestine and, to some extent, the amount ofneutral mucins in the goblet cells of both small and large intestine and an increase in the amount of sulphated mucins in the large intestine. In rats given the commercial diet the periodic acid Schiff staining for neutral mucins was more intense in the upper crypts of the small intestine than in the lower crypts, and to a lesser extent in the upper crypts of the large intestine. Little is known, however, about the influence the gut microbial flora may exert on the secretory pattern of the intestinal mucins.The histochemical characterisation of intestinal mucins in laboratory animals and in humans has received growing attention (for It has been reported that diets containing fibre can modify the shape of villi'5 in the small intestine of newly weaned rats and alter the cell tumover rates in the intestinal crypts.3 It is also well known that the turnover rate of epithelial cells is faster in conventional animals than in their germ free counterparts. In all species examined the villus:crypt ratio is higher in germ free animals, indicating that less proliferating tissue is required to keep the germ free mucosa intact.'6Our objective in this investigation was to evaluate whether the microbial flora, or diet, or both, affect the nature and distribution of the carbohydrates in the mucus secreting cells of a rat model and also to determine whether the intestinal morphology was altered by dietary modification. Two different types of diet were used. One was a commercial rodent diet composed of natural materials and the other was a nutritionally adequate mixture of purified ingredients. Because the composition of the indigenous gut microflora is characteristic of each species, the suitability of the conventional rat as a model for man is open to question. In an attempt to produce a model system more closely related to man several workers have used rodents born germ free and then associated with a flora of human origin (see review'7). To obtain some preliminary evidence on possible species differences, our 209 on 12 May 2018 by guest. Protected by copyright.
We have developed a fluorescence quenching method using peptides containing 3,5-dibromotryrosine to measure oligomerization of model transmembrane alpha-helices in lipid bilayers. Peptides of the type Ac-LysLysGlyLeu(m)XLeu(n)LysLysAla-amide where X is tryptophan or 3,5-dibromotyrosine were found to form heterodimers in bilayers of phosphatidylcholine in the liquid-crystalline phase. The free energy of dimer formation changed little with increasing number of Leu residues from 16 to 22 but increased with increasing phospholipid fatty acyl chain length, with a slope of about 0.5 kJ mol(-1) per fatty acyl chain carbon. Peptides were excluded from lipid in the gel phase, resulting in increased levels of oligomerization. Addition of cholesterol to form the liquid-ordered state led to increased dimerization but without phase separation. The presence of phosphatidylethanolamine had little effect on dimerization.
The Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum has been reconstituted with peptides corresponding to the hydrophobic domain of phospholamban (PLB) with or without the three Cys residues replaced by Ala, and with PLB with the three Cys residues replaced by Ala [PLBcys-(1-52)]. Reconstitution with the hydrophobic domain of PLB[PLB(25-52)] was found to decrease the apparent affinity of the ATPase for Ca2+ with no effect on the maximal rate of ATP hydrolysis observed at saturating concentrations of Ca2+. Reconstitution with PLBCys-(1-52) decreased both the apparent affinity for Ca2+ and the maximal activity; the effect on maximal activity followed from a decrease in the rate of the Ca2+ transport step (E1PCa2-->E2P) as observed with the hydrophilic domain PLB(1-25). The concentration dependences of the effects of the hydrophobic domain and of the whole PLB molecule were very similar, suggesting that the hydrophilic domain made little contribution to the affinity of the ATPase for PLB. The effect of PLB on the ATPase was dependent on the molar ratio of phospholipid to ATPase, suggesting partition of the PLB between its binding site on the ATPase and the bulk lipid phase in the membrane. Neither PLB nor its hydrophobic domain affected the rates of phosphorylation or dephosphorylation of the ATPase. Despite their effects on the apparent affinity of the ATPase for Ca2+, neither PLB nor its hydrophobic domain had any effect on the true affinity of the ATPase for Ca2+, as measured from changes in the tryptophan fluorescence of the ATPase. The effects of PLB on the activity of the ATPase are the sum of the effects of its hydrophilic and hydrophobic domains.
We have studied the effects of aromatic residues at the ends of peptides of the type Ac-KKGL(n)()WL(m)()KKA-amide on their interactions with lipid bilayers as a function of lipid fatty acyl chain length, physical phase, and charge. Peptide Ac-KKGFL(6)WL(8)FKKA-amide (F(2)L(14)) incorporated into bilayers of phosphatidylcholines containing monounsaturated fatty acyl chains of lengths C14-C24 at a peptide:lipid molar ratio of 1:100 in contrast to Ac-KKGL(7)WL(9)KKA-amide (L(16)) which did not incorporate at all into dierucoylphosphatidylcholine [di(C24:1)PC]; Ac-KKGYL(6)WL(8)YKKA-amide (Y(2)L(14)) incorporated partly into di(C24:1)PC. Lipid-binding constants relative to that for dioleoylphosphatidylcholine (C18:1)PC were obtained using a fluorescence quenching method. For Y(2)L(14) and F(2)L(14), relative lipid-binding constants increased with increasing fatty acyl chain length from C14 to C24; strongest binding did not occur at the point where the hydrophobic length of the peptide equalled the hydrophobic thickness of the bilayer. For Ac-KKGYL(9)WL(11)YKKA-amide (Y(2)L(20)), increasing chain length from C18 to C24 had little effect on relative binding constants. Anionic phospholipids bound more strongly than zwitterionic phospholipids to Y(2)L(14) and Y(2)L(20) but effects of charge were relatively small. In two phase (gel and liquid crystalline) mixtures, all the peptides partitioned more strongly into liquid crystalline than gel phase; effects were independent of the structure of the peptide or of the lipid (dipalmitoylphosphatidylcholine or bovine brain sphingomyelin). Addition of cholesterol had little effect on incorporation of the peptides into lipid bilayers. It is concluded that the presence of aromatic residues at the ends of transmembrane alpha-helices effectively buffers them against changes in bilayer thickness caused either by an increase in the chain length of the phospholipid or by the presence of cholesterol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.