TiO2 nanoparticles were successfully fabricated on electrospun polyacrylonitrile (PAN) nanofibers via the coupling of electrospinning and hydrothermal pathway. A straightforward photocatalysis oxidation process has been developed for simultaneous desulfurization and denitrification of flue gas using the TiO2-PAN photocatalyst. Also, the influences of some important operating parameters, such as titanium loading content of catalyst, flue gas humidity, flue gas flow, and inlet flue gas temperature on removal efficiencies of SO2 and NO were investigated. The results demonstrated that removal efficiencies of 99.3% for SO2 and 71.2% for NO were attained under the following optimal experiment conditions: titanium loading content, 6.78 At %; gas flow rate, 200 mL/min; flue gas humidity, 5%; inlet flue gas temperature, 40 °C. Furthermore, the presumed reaction mechanism of SO2 and NO removal using TiO2-PAN photocatalyst under UV light was proposed.
Increasing attention has been given to nanobiocatalysis for commercial applications. In this study, laccase was immobilized on polyacrylonitrile (PAN) nanofibrous membranes through ethanol/HCl method of amidination reaction and successfully applied for removal of 2,4,6-trichlorophenol (TCP) from water. PAN membranes with fiber diameters from 200 nm to 300 nm were fabricated via electrospinning and provided a large surface area for enzyme immobilization and catalytic reactions. Images of scanning electron microscope demonstrated the enzyme molecules were aggregated on the nanofiber surface. The immobilized laccase exhibited 72% of the free enzyme activity and kept 60% of its initial activity after 10 operation cycles. Moreover, the storage stability of the immobilized laccase was considered excellent because they maintained more than 92% of the initial activity after 18 days of storage, whereas the free laccase retained only 20%. The laccase-PAN nanofibrous membranes exhibited high removal efficiency of TCP under the combined actions of biodegradation and adsorption. More than 85% of the TCP was removed under optimum conditions. Effects of various factors on TCP removal efficiency of the immobilized laccase were analyzed. Results suggest that laccase-PAN nanofibrous membranes can be used in removing TCP from aqueous sources and have potential for use in other commercial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.