The proton is the primary building block of the visible Universe, but many of its properties-such as its charge radius and its anomalous magnetic moment-are not well understood. The root-mean-square charge radius, r(p), has been determined with an accuracy of 2 per cent (at best) by electron-proton scattering experiments. The present most accurate value of r(p) (with an uncertainty of 1 per cent) is given by the CODATA compilation of physical constants. This value is based mainly on precision spectroscopy of atomic hydrogen and calculations of bound-state quantum electrodynamics (QED; refs 8, 9). The accuracy of r(p) as deduced from electron-proton scattering limits the testing of bound-state QED in atomic hydrogen as well as the determination of the Rydberg constant (currently the most accurately measured fundamental physical constant). An attractive means to improve the accuracy in the measurement of r(p) is provided by muonic hydrogen (a proton orbited by a negative muon); its much smaller Bohr radius compared to ordinary atomic hydrogen causes enhancement of effects related to the finite size of the proton. In particular, the Lamb shift (the energy difference between the 2S(1/2) and 2P(1/2) states) is affected by as much as 2 per cent. Here we use pulsed laser spectroscopy to measure a muonic Lamb shift of 49,881.88(76) GHz. On the basis of present calculations of fine and hyperfine splittings and QED terms, we find r(p) = 0.84184(67) fm, which differs by 5.0 standard deviations from the CODATA value of 0.8768(69) fm. Our result implies that either the Rydberg constant has to be shifted by -110 kHz/c (4.9 standard deviations), or the calculations of the QED effects in atomic hydrogen or muonic hydrogen atoms are insufficient.
Proton Still Too Small Despite a proton's tiny size, it is possible to measure its radius based on its charge or magnetization distributions. Traditional measurements of proton radius were based on the scattering between protons and electrons. Recently, a precision measurement of a line in the spectrum of muonium—an atom consisting of a proton and a muon, instead of an electron—revealed a radius inconsistent with that deduced from scattering studies. Antognini et al. (p. 417 ; see the Perspective by Margolis ) examined a different spectral line of muonium, with results less dependent on theoretical analyses, yet still inconsistent with the scattering result; in fact, the discrepancy increased.
The extremely precise extraction of the proton radius by Pohl et al. from the measured energy difference between the 2P and 2S states of muonic hydrogen disagrees significantly with that extracted from electronic hydrogen or elastic electron-proton scattering. This is the proton radius puzzle. The origins of the puzzle and the reasons for believing it to be very significant are explained. Various possible solutions of the puzzle are identified, and future work needed to resolve the puzzle is discussed.
ZusammenfassungDas Wasserstoffatom (H) stellt ein einzigartiges System für Tests der Quanten-Elektrodynamik dar. Aufgrund seiner einfachen Struktur und genauen theoretischen Beschreibung liefert es außerdem wichtige Daten für die Bestimmung der RydbergKonstante R ∞ und des Proton-Ladungsradius r p im Rahmen der globalen Anpassung fundamentaler Konstanten durch das Committee on Data for Science and Technology (CODATA). Im Jahre 2010 kam das sogenannte "proton size puzzle" auf, eine Diskrepanz von sieben Standardabweichungen zwischen CODATA und dem zehn mal genauer gemessenen Wert von r p in myonischem Wasserstoff (µ -p, [1, 2] AbstractThe hydrogen atom (H) is a unique system for tests of quantum electrodynamics (QED). Due to its simplicity and accurate theoretical description, it also provides key input data for the determination of the Rydberg constant R ∞ and the proton root mean square (r.m.s.) charge radius r p in the global adjustment of fundamental constants [4] by the Committee on Data for Science and Technology (CODATA). In the year 2010, the "proton size puzzle" emerged, which refers to a discrepancy of seven standard deviations between CODATA and a ten times more accurate measurement of r p in muonic hydrogen (µ -p, [1, 2]). Proposed solutions for this puzzle cover a wide range of scenarios, up to physics beyond the standard model [3]. This thesis reports on a novel scheme for high resolution spectroscopy of dipole allowed 2S -nP transitions in H, using a cryogenic beam of H atoms that are prepared in the meta-stable 2S F =0 1/2 state by state selective optical excitation. Such measurements can be used for a new determination of R ∞ and r p from H spectroscopy, shedding new light on the "proton size puzzle". The scheme has been applied to spectroscopy of the 2S-4P transition first, yielding: These values are as accurate as the ones determined from the aggregate world data of precision H spectroscopy (15 measurements) that enter the CODATA adjustment. While a discrepancy of 3.8 combined standard deviations is found to the latter, the presented results agree with the measurements in µ -p. The 2S-4P experiment is essentially unaffected by the systematic effects dominating the uncertainties in the previous most precise determinations of R ∞ using dipole forbidden two photon transitions in H. Instead, the main systematic effects are the first order Doppler effect, canceled by the use of an active fiber-based retroreflector (AFR) developed in this thesis, and line shape distortions due to quantum interference (QI) of neighboring atomic resonances. The latter effect has come to the attention of the precision spectroscopy community only recently [8,9]. Apparent QI line shifts have been studied experimentally, yielding the first direct observation in precision spectroscopy of largely separated atomic resonances. The observed shifts of up to ± 51 kHz are six times larger than the proton size discrepancy for the 2S-4P transition. They are brought under control by a suitable line shape model function, derived and...
We have measured the 1S-2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f(1S-2S) = 2,466,061,413,187,035 (10) Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2 × 10(-15) arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.