Current distributed routing paradigms (such as link-state, distancevector, and path-vector) involve a convergence process consisting of an iterative exploration of intermediate routes triggered by certain events such as link failures. The convergence process increases router load, introduces outages and transient loops, and slows reaction to failures. We propose a new routing paradigm where the goal is not to reduce the convergence times but rather to eliminate the convergence process completely. To this end, we propose a technique called Failure-Carrying Packets (FCP) that allows data packets to autonomously discover a working path without requiring completely up-to-date state in routers. Our simulations, performed using real-world failure traces and Rocketfuel topologies, show that: (a) the overhead of FCP is very low, (b) unlike traditional link-state routing (such as OSPF), FCP can provide both low lossrate as well as low control overhead, (c) compared to prior work in backup path precomputations, FCP provides better routing guarantees under failures despite maintaining lesser state at the routers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.