This paper addresses the optimal least-squares linear estimation problem for a class of discrete-time stochastic systems with random parameter matrices and correlated additive noises. The system presents the following main features: (1) one-step correlated and cross-correlated random parameter matrices in the observation equation are assumed; (2) the process and measurement noises are one-step autocorrelated and two-step cross-correlated. Using an innovation approach and these correlation assumptions, a recursive algorithm with a simple computational procedure is derived for the optimal linear filter. As a significant application of the proposed results, the optimal recursive filtering problem in multi-sensor systems with missing measurements and random delays can be addressed. Numerical simulation examples are used to demonstrate the feasibility of the proposed filtering algorithm, which is also compared with other filters that have been proposed.
In this paper, the optimal least-squares state estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems with state transition and measurement random parameter matrices and correlated noises. It is assumed that at any sampling time, as a consequence of possible failures during the transmission process, one-step delays with different delay characteristics may occur randomly in the received measurements. The random delay phenomenon is modelled by using a different sequence of Bernoulli random variables in each sensor. The process noise and all the sensor measurement noises are one-step autocorrelated and different sensor noises are one-step cross-correlated. Also, the process noise and each sensor measurement noise are two-step cross-correlated. Based on the proposed model and using an innovation approach, the optimal linear filter is designed by a recursive algorithm which is very simple computationally and suitable for online applications. A numerical simulation is exploited to illustrate the feasibility of the proposed filtering algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.