Stroke is a leading cause of motor disability worldwide. Upper limb rehabilitation is particularly challenging since approximately 35% of patients recover significant hand function after 6 months of the stroke’s onset. Therefore, new therapies, especially those based on brain-computer interfaces (BCI) and robotic assistive devices, are currently under research. Electroencephalography (EEG) acquired brain rhythms in alpha and beta bands, during motor tasks, such as motor imagery/intention (MI), could provide insight of motor-related neural plasticity occurring during a BCI intervention. Hence, a longitudinal analysis of subacute stroke patients’ brain rhythms during a BCI coupled to robotic device intervention was performed in this study. Data of 9 stroke patients were acquired across 12 sessions of the BCI intervention. Alpha and beta event-related desynchronization/synchronization (ERD/ERS) trends across sessions and their association with time since stroke onset and clinical upper extremity recovery were analyzed, using correlation and linear stepwise regression, respectively. More EEG channels presented significant ERD/ERS trends across sessions related with time since stroke onset, in beta, compared to alpha. Linear models implied a moderate relationship between alpha rhythms in frontal, temporal, and parietal areas with upper limb motor recovery and suggested a strong association between beta activity in frontal, central, and parietal regions with upper limb motor recovery. Higher association of beta with both time since stroke onset and upper limb motor recovery could be explained by beta relation with closed-loop communication between the sensorimotor cortex and the paralyzed upper limb, and alpha being probably more associated with motor learning mechanisms. The association between upper limb motor recovery and beta activations reinforces the hypothesis that broader regions of the cortex activate during movement tasks as a compensatory mechanism in stroke patients with severe motor impairment. Therefore, EEG across BCI interventions could provide valuable information for prognosis and BCI cortical activity targets.
Magnetic resonance (MR) has been accepted as the reference image study in the clinical environment. The development of new sequences has allowed obtaining diverse images with high clinical importance and whose interpretation requires their joint analysis (multispectral MRI). Recent approaches to segment MRI point toward the definition of hybrid models, where the advantages of region and contour-based methods can be exploited to look for the integration or fusion of information, thus enhancing the performance of the individual approaches. Following this perspective, a hybrid model for multispectral brain MRI segmentation is presented. The model couples a segmenter, based on a radial basis network (RBFNNcc), and an active contour model, based on a cubic spline active contour (CSAC) interpolation. Both static and dynamic coupling of RBFNNcc and CSAC are proposed; the RBFNNcc stage provides an initial contour to the CSAC; the initial contour is optimally sampled with respect to its curvature variations; multispectral information and a restriction term are included into the CSAC energy equation. Segmentations were compared to a reference stack, indicating high-quality performance as measured by Tanimoto indexes of 0.74 +/- 0.08.
Detrended fluctuation analysis (DFA) is becoming a widely used technique for exploring the structure of correlations in heart rate variability (HRV) data. This method provides a scaling or fractal exponent alpha(x) derived from the behaviour of the root-mean-square fluctuations along different time scales n. Rather than just finding a single exponent, covering either short (alpha(1)) or long range (alpha(2)), we recently suggested tracking the local evolution of alpha(x), as in this way scaling patterns (SP), which seem to provide more detailed characterizations of HRV data, are revealed. Here, we evaluate such potential advantage by classifying long-term data from 51 subjects in normal sinus rhythm and 29 congestive heart failure patients. Using the SP we achieved a significantly better classification of these data than using alpha(x), or the statistic pNN20, thereby confirming that the SP provide a useful assessment of the correlation structure in HRV data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.