Plastics wastes from a municipal solid waste (MSW) plant have a high-energy content and are suitable for fuel generation. Thermal cracking is one of the possible ways to obtain petrochemical feedstock from polymer wastes. Municipal waste plastic of LDPE conversion to kerosene grade fuel experiments were carried out under atmospheric conditions at temperatures between 150˚C and 420˚C. Low density polyethylene (LDPE) plastic waste (Code #2) was thermally depolymerized in batch process into stainless steel reactor without adding catalyst. The maximum kerosene grade fuel yield is 30%, other grade fuel 60%, light gas 6% and left over residue 4%. The composition, sulphur and Btu value of liquid products were determined by ASTM method. Produced fuel was analyzed by gas chromatography and mass spectrometer and FT-IR. Very high conversions from LDPE waste plastic to kerosene grade fuel (up to 35%) were obtained while using this technique. Detailed product analyses and characterization lead to a reasonable explanation of reaction pathways and mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.