Introduction IgG4 antibodies against neurofascin (Nfasc155 and Nfasc140/186), contactin (CNTN1) and contactin-associated protein (Caspr1) are described in specific subtypes of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Our objective was to assess, in a real-life practice, the incidence, the clinical features and the response to treatment of these forms of CIDP. Methods 1500 sera of patients suspected of having CIDP from France, Belgium and Switzerland were prospectively tested using a flow cytometry technique. The characteristics of patients with antibodies against the node of Ranvier were compared to 100 seronegative CIDP from our department. Results IgG4 antibodies against Nfasc155, CNTN1, and Caspr1 were, respectively, detected in 15 (prevalence 1%), 10 (0.7%) and 2 (0.2%) sera. Antibodies specific of the Nfasc140/186 were not detected. All subjects with antibodies against the node of Ranvier fulfilled diagnostic criteria for CIDP. CIDP with anti-Nfasc155 were younger, had more sensory ataxia and postural tremor than seronegative CIDP. CIDP with anti-CNTN1 had more frequent subacute onset and facial paralysis, commoner renal involvement with membranous glomerulonephritis and greater disability, than seronegative CIDP. CIDP with anti-Caspr1 had more frequent respiratory failure and cranial nerve involvement but not more neuropathic pain than seronegative CIDP. Intravenous immunoglobulins were ineffective in most seropositive patients. Rituximab produced dramatic improvement in disability and decreased antibodies titres in 13 seropositive patients (8 with anti-Nfasc155 and 5 with anti-CNTN1 antibodies). Conclusions Although rare, anti-paranodal antibodies are clinically valuable, because they are associated with specific phenotypes and therapeutic response.
In this study, we describe the phenotypic spectrum of distal hereditary motor neuropathy caused by mutations in the small heat shock proteins HSPB1 and HSPB8 and investigate the functional consequences of newly discovered variants. Among 510 unrelated patients with distal motor neuropathy, we identified mutations in HSPB1 (28 index patients/510; 5.5%) and HSPB8 (four index patients/510; 0.8%) genes. Patients have slowly progressive distal (100%) and proximal (13%) weakness in lower limbs (100%), mild lower limbs sensory involvement (31%), foot deformities (73%), progressive distal upper limb weakness (29%), mildly raised serum creatine kinase levels (100%), and central nervous system involvement (9%). We identified 12 HSPB1 and four HSPB8 mutations, including five and three not previously reported. Transmission was either dominant (78%), recessive (3%), or de novo (19%). Three missense mutations in HSPB1 (Pro7Ser, Gly53Asp, and Gln128Arg) cause hyperphosphorylation of neurofilaments, whereas the C-terminal mutant Ser187Leu triggers protein aggregation. Two frameshift mutations (Leu58fs and Ala61fs) create a premature stop codon leading to proteasomal degradation. Two mutations in HSPB8 (Lys141Met/Asn) exhibited increased binding to Bag3. We demonstrate that HSPB1 and HSPB8 mutations are a major cause of inherited motor axonal neuropathy. Mutations lead to diverse functional outcomes further demonstrating the pleotropic character of small heat shock proteins.
BackgroundDietary exposure to the cyanotoxin BMAA is suspected to be the cause of amyotrophic lateral sclerosis in the Western Pacific Islands. In Europe and North America, this toxin has been identified in the marine environment of amyotrophic lateral sclerosis clusters but, to date, only few dietary exposures have been described.ObjectivesWe aimed at identifying cluster(s) of amyotrophic lateral sclerosis in the Hérault district, a coastal district from Southern France, and to search, in the identified area(s), for the existence of a potential dietary source of BMAA.MethodsA spatio-temporal cluster analysis was performed in the district, considering all incident amyotrophic lateral sclerosis cases identified from 1994 to 2009 by our expert center. We investigated the cluster area with serial collections of oysters and mussels that were subsequently analyzed blind for BMAA concentrations.ResultsWe found one significant amyotrophic lateral sclerosis cluster (p = 0.0024), surrounding the Thau lagoon, the most important area of shellfish production and consumption along the French Mediterranean coast. BMAA was identified in mussels (1.8 µg/g to 6.0 µg/g) and oysters (0.6 µg/g to 1.6 µg/g). The highest concentrations of BMAA were measured during summer when the highest picocyanobacteria abundances were recorded. ConclusionsWhile it is not possible to ascertain a direct link between shellfish consumption and the existence of this ALS cluster, these results add new data to the potential association of BMAA with sporadic amyotrophic lateral sclerosis, one of the most severe neurodegenerative disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.