Limited understanding of infant pain has led to its lack of recognition in clinical practice. While the network of brain regions that encode the affective and sensory aspects of adult pain are well described, the brain structures involved in infant nociceptive processing are less well known, meaning little can be inferred about the nature of the infant pain experience. Using fMRI we identified the network of brain regions that are active following acute noxious stimulation in newborn infants, and compared the activity to that observed in adults. Significant infant brain activity was observed in 18 of the 20 active adult brain regions but not in the infant amygdala or orbitofrontal cortex. Brain regions that encode sensory and affective components of pain are active in infants, suggesting that the infant pain experience closely resembles that seen in adults. This highlights the importance of developing effective pain management strategies in this vulnerable population.DOI: http://dx.doi.org/10.7554/eLife.06356.001
Measuring infant pain is complicated by their inability to describe the experience. While nociceptive brain activity, reflex withdrawal and facial grimacing have been characterised, the relationship between these activity patterns has not been examined. As cortical and spinally mediated activity is developmentally regulated, it cannot be assumed that they are predictive of one another in the immature nervous system. Here, using a new experimental paradigm, we characterise the nociceptive-specific brain activity, spinal reflex withdrawal and behavioural activity following graded intensity noxious stimulation and clinical heel lancing in 30 term infants. We show that nociceptive-specific brain activity and nociceptive reflex withdrawal are graded with stimulus intensity (p < 0.001), significantly correlated (r = 0.53, p = 0.001) and elicited at an intensity that does not evoke changes in clinical pain scores (p = 0.55). The strong correlation between reflex withdrawal and nociceptive brain activity suggests that movement of the limb away from a noxious stimulus is a sensitive indication of nociceptive brain activity in term infants. This could underpin the development of new clinical pain assessment measures.
Changes in metabolic state, such as those induced by fasting, have profound effects on reproduction. In rats, the time-course over which fasting inhibits luteinising hormone (LH) release is reduced to 48 h by the presence of oestradiol-17beta (E(2)). Hypothalamic kisspeptin plays a key role in mediating the actions of E(2) on gonadotrophin-releasing hormone (GnRH) neurones, and thereby promotes LH release. KiSS-1-expressing neurones are found in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Extensive evidence implicates the AVPV in GnRH release and the ARC in energy balance. The latter nucleus also contains neurones that express neuropeptide Y (NPY), an orexigenic peptide implicated in GnRH control. To elucidate the involvement of kisspeptin and/or NPY in hypothalamic responses to fasting, their expression was quantified by in situ hybridisation histochemistry in ovariectomised rats, with or without E(2) replacement, before and after 48 h of fasting. In the presence of E(2), but not in its absence, the fasting suppressed plasma LH. In the AVPV, the low level of KiSS-1 expression found in the absence of E(2) was unaffected by fasting. By contrast, the elevated level found in the presence of E(2) was suppressed by fasting. Independent of E(2), fasting had no effect on KiSS-1 expression in the ARC, but increased NPY expression at that site. The present study has identified the AVPV as a site at which KiSS-1 expression can be influenced by fasting. The results suggest that inhibition of KiSS-1 expression in the AVPV may be a significant factor in restraining the gonadotrophic axis in response to negative energy balance in the presence of oestrogen. The extent to which the concurrent rise in NPY expression in the ARC may contribute to the suppression of LH release by influencing AVPV kisspeptin neurones, directly or indirectly, or by actions independent of kisspeptin, remains to be established.
African mole-rats provide a unique taxonomic group for investigating the evolution and neurobiology of sociality. The two species investigated here display extreme differences in social organization and reproductive strategy. Naked mole-rats (NMRs) live in colonies, dominated by a queen and her consorts; most members remain nonreproductive throughout life but cooperate in burrowing, foraging, and caring for pups, for which they are not biological parents (alloparenting). In contrast, Cape mole-rats (CMRs) are solitary and intolerant of conspecifics, except during fleeting seasonal copulation or minimal maternal behavior. Research on other mammals suggests that oxytocin receptors at various telencephalic sites regulate social recognition, monogamous pair bonding, and maternal/allomaternal behavior. Current paradigms in this field derive from monogamous and polygamous species of New World voles, which are evolutionarily remote from Old World mole-rats. The present findings indicate that NMRs exhibit a considerably greater level of oxytocin receptor (OTR) binding than CMRs in the: nucleus accumbens; indusium griseum; central, medial, and cortical amygdaloid nuclei; bed nucleus of the stria terminalis; and CA1 hippocampal subfield. In contrast, OTR binding in the piriform cortex is intense in CMRs but undetectable in NMRs. We speculate that the abundance of OTR binding and oxytocin-neurophysin-immunoreactive processes in the nucleus accumbens of NMRs reflects their sociality, alloparenting behavior, and potential for reproductive attachments. In contrast, the paucity of oxytocin and its receptors at this site in CMRs may reflect a paucity of prosocial behaviors. Whether similarities in OTR expression between eusocial mole-rats and monogamous voles are due to gene conservation or convergent evolution remains to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.