With the increasing use of fibre composites in applications such as cryogenic liquid hydrogen tanks and repair/retrofitting of bridges, the diffusion and freezing of moisture to form ice is an issue of growing importance. The volumetric expansion of water when it freezes to form ice results in stress concentrations at the inclusion tip that may synergistically interact with the residual tensile stresses in a laminate at low temperatures to initiate a crack. In addition, understanding the long-term effect of daily and/or seasonal freeze-thaw cycling on crack growth in a laminate is of vital importance for structural durability. The objective of this paper is to establish a theoretical framework for the calculation of the stress intensity factor (KI) of a pre-existing crack in a composite structure due to the phase transition of trapped moisture. The constrained volume expansion of trapped moisture due to freezing is postulated to be the crack driving force. The principle of minimum strain energy is employed to calculate the elastic field within an orthotropic laminate containing an idealized elliptical elastic inclusion in the form of ice. It is postulated that a slender elliptical elastic inclusion can be used to approximate the stress field at the crack face, which can subsequently be used to calculate the stress intensity factor, KI, for the crack. The verification of the analytical model predictions and some potential applications will be published in a separate paper.
Verifications and applications of an analytical model developed previously for the calculation of mode-I stress intensity factor of a pre-existing crack in an orthotropic composite structure due to the phase transition of trapped moisture are presented in this paper. The verifications are based on comparisons of the stresses in an elliptic elastic inclusion and the stress intensity factor with a special case of isotropy (for which there exists an analytical solution) and with finite element analysis for the case of orthotropy. The results indicate that the stress state in a slender elliptic elastic inclusion can be used to approximate the stress field at the crack face, which could subsequently be adopted to determine the stress intensity factor. Analyses of the delamination and fatigue life prediction for freeze-thaw cycling are provided as specific applications of the model.
Student Activities etc., for making my time here a great experience. Finally, I would like to express my sincere gratitude to my parents, grandparents, sister and brother-in-law and friends across the globe for continuous support and encouragement. vi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.