Dendrimers are nanosized, symmetrical molecules in which a small atom or group of atoms is surrounded by the symmetric branches known as dendrons. The structure of dendrimers possesses the greatest impact on their physical and chemical properties. They grow outwards from the core-shell which further reacts with monomers having one reactive or two dormant molecules. Dendrimers’ unique characteristics such as hyperbranching, well-defined spherical structure, and high compatibility with the biological systems are responsible for their wide range of applications including medical and biomedical areas. Particularly, the dendrimers’ three-dimensional structure can incorporate a wide variety of drugs to form biologically active drug conjugates. In this review, we focus on the synthesis, mechanism of drug encapsulations in dendrimers, and their wide applications in drug delivery.
Nanotechnology is indisputably a scientific technique that offers the prospect of new therapies, and hope, for the treatment of malignant illnesses. It is a novel technology that offers new approaches for the diagnosis and management of diverse diseases. Although the discovery of Quantum dots (QD) nano-transporters has already led to a few positive developments, QD nano-transporters are still at their initial stage, though have yet proven valuable to society. The excertion of QD indicates conversion in natural imaging along with photograph have established incredible suitability in bio-imaging, new drug development, targeted gene deliverance, biosensing, photodynamic treatment as well as diagnosis. The present review aimed to confer the significance of QD in diagnosis as well as in management of cancer. This review aims to impart fundamental insight as well as conception of QD its merits, properties, utilization as well as mode of action. This review highlight of different designing schemes of QD like hydrothermal, drop-casting, ultrasonic, solvothermal, spin-coating, atomic layer desorption, layer by layer, polymethylmethacrylate aided-transfer, electrochemical, ion beam sputtering deposition. Moreover, we have elaborated on the diverse researches related to cytotoxic examination to reveal that QDs are harmless. Concisely, the present review summarizes the fabrication schemes, current research and utilization of QD in cancer treatment.
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Scientists are focusing immense attention on polymeric nanocarriers as a prominent delivery vehicle for several biomedical applications including diagnosis of diseases, delivery of therapeutic agents, peptides, proteins, genes, siRNA, and vaccines due to their exciting physicochemical characteristics which circumvent degradation of unstable drugs, reduce toxic side effects through controlled release, and improve bioavailability. Polymers-based nanocarriers offer numerous benefits for in vivo drug delivery such as biocompatibility, biodegradability, non-immunogenicity, active drug targeting via surface modification, and controlled release due to their pH—and thermosensitive characteristics. Despite their potential for medicinal use, regulatory approval has been achieved for just a few. In this review, we discuss the historical development of polymers starting from their initial design to their evolution as nanocarriers for therapeutic delivery of drugs, peptides, and genes. The review article also expresses the applications of polymeric nanocarriers in the pharmaceutical and medical industry with a special emphasis on oral, ocular, parenteral, and topical application of drugs, peptides, and genes over the last two decades. The review further examines the practical, regulatory, and clinical considerations of the polymeric nanocarriers, their safety issues, and directinos for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.