This article investigates the spall propagation mechanism for ball bearing raceways by focusing on an experimental investigation of cracks that evolve in the vicinity of the spall edge. Understanding the spall propagation mechanism is an important step towards developing a physics-based prognostic tool for ball bearings. This research reflects an investigation of different spall sizes that propagate naturally both in laboratory experiments and in the field. By using a combined model of a rigid body dynamic model and a finite element model that simulates the rolling element–spall edge interaction, our results shed light on the material behavior (displacements, strains, and stresses) that creates an environment for crack formation and propagation. With the support of the experimental results and the rolling element–spall edge interaction model results, three stages of the mechanism that control fragment release from the raceway were identified. In Stage one, sub-surface cracks appear underneath the spall trailing edge. In Stage two, cracks appear in front of the trailing edge of the spall and, in Stage three, the cracks propagate until a fragment is released from the raceway. These stages were observed in all the tested bearings. In addition, other phenomena that affect the propagation of the cracks and the geometry of the fragment were observed, such as blistering and plastic deformation. We include an explanation of what determines the shape of the fragments.
Condition based maintenance (CBM) is the preferred approach in rotating machinery and aim to replace the commonly used approach of maintenance based on service time. To achieve an effective CBM, different types of sensors should be placed in the system for condition monitoring to detect the location of the fault and its severity. In this research, a Fiber Bragg Grating (FBG) has been used for condition monitoring on spalls in deep grove ball bearings. The motivation for using these sensors is the ability to get a high-noise signal (SNR) ratio. The usage of FBG sensors is relatively new for health monitoring systems of rotating machinery. Therefore, there is not enough understanding of the strain signature measured by the FBG. To examine the phenomena in the strain signals, a physics-based model of the strain signature has been developed. In this model, two complementary models were integrated, a finite element (FE) model and a dynamic model . The strain model describes the interaction between the rolling elements (REs) and the bearing housing and simulates the strain behavior measured on the bearing housing. The simulation results are validated with strain signals measured by the FBG sensor at different stages of an endurance test. The model allows simulation of a wide range of spall lengths and describes the behavior of the strain signals for different levels of misalignment. The insights from the model enabled the development of an automatic algorithm that assess the severity of the defect and to track spall length during bearing operation, based on strain signals.
The aim of this study was to investigate the spall propagation mechanism in ball bearing raceways using physics-based models. Spalling is one of the most common types of bearing failures that can lead to catastrophic failure. This research takes a step forward toward developing a prognostic tool for ball bearings. It is first necessary to understand the spall progression process in order to formulate a constitutive law of spall deterioration and to estimate the amount of remaining useful life. Fragment formation in the vicinity of the spall edge was found to consist of surface and sub-surface cracks that eventually coalesce, and a fragment is released from the raceway, based on naturally-developed spalls. Here, we describe a physics-based model, integrating a dynamic model with a finite element one to simulate this process. A continuum damage mechanics (CDM) approach and fracture mechanics tools were embedded into the finite element model to simulate the damage propagation. The formation of cracks in the vicinity of the spall (surface and sub-surface cracks) were studied using this effective stress CDM model, and the propagation of the cracks was examined using two approaches: a fracture mechanics approach and an accumulated inelastic hysteresis energy CDM approach. The latter also predicts the overall process of a single fragment release. The simulation results of the spall propagation models are supported by experimental results of spalls from both laboratory experimental bearings and an in-service Sikorsky CH-53 helicopter swashplate bearing. The results obtained show that the impact of the ball on the spall edge affects the crack propagation and the appearance of the surface and sub-surface cracks. Both release the residual stresses and cause crack propagation until a fragment is released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.