FIDMD), collectively assigned as EMA/FIDMD+MEB shortened as EMA/FM. Of 54 drugs with an actionable gene-drug interaction in the CPIC and DPWG guidelines, only 50% had actionable pharmacogenomic information in the SmPCs and the agencies were in agreement in only 18% of the cases. We further compared 450 additional drugs, lacking CPIC or DPWG guidance, and found 126 actionable gene-drug labels by the FDA and/or the EMA/FM. Based on these 126 drugs in addition to the 54 above, the consensus of actionable pharmacogenomic labeling between the FDA and the EMA/FM was only 54%. In conclusion, guidelines provided by CPIC/DPWG are only partly implemented into the SmPCs and the implementation of pharmacogenomic drug labels into the clinics would strongly gain from a higher extent of consensus between agencies.Interindividual differences in drug metabolism, response, and toxicity are important. These are inherent to differences in physiological factors like age, sex, body mass index, and lifestyle, but also by drug interactions at the enzyme, transporter, or target levels as well as by genetic factors. Overall estimations have been made, identifying 20-30% of this variability to be attributable to genetic factors, although an exact figure is difficult to define. 1,2 Twin studies do indicate that the genetic influence for the pharmacokinetics of certain drugs is very high. 3 Indeed, in some cases, the genetic background for such variability still has to be identified, including the exact role of rare genetic variants. 4,5
The WNT signaling
system governs critical processes during embryonic
development and tissue homeostasis, and its dysfunction can lead to
cancer. Details concerning selectivity and differences in relative
binding affinities of 19 mammalian WNTs to the cysteine-rich domain
(CRD) of their receptors—the ten mammalian Frizzleds (FZDs)—remain
unclear. Here, we used eGFP-tagged mouse WNT-3A for a systematic analysis
of WNT interaction with every human FZD paralogue in HEK293A cells.
Employing HiBiT-tagged full-length FZDs, we studied eGFP-WNT-3A binding
kinetics, saturation binding, and competition binding with commercially
available WNTs in live HEK293A cells using a NanoBiT/BRET-based assay.
Further, we generated receptor chimeras to dissect the contribution
of the transmembrane core to WNT-CRD binding. Our data pinpoint distinct
WNT-FZD selectivity and shed light on the complex WNT-FZD binding
mechanism. The methodological development described herein reveals
yet unappreciated details of the complexity of WNT signaling and WNT-FZD
interactions, providing further details with respect to WNT-FZD selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.