Calcific aortic valve disease (CAVD)—the most common valvular heart disease—is accelerated in diabetes and has no pharmacotherapy. Although it is known that early CAVD is associated with inflammation and osteogenesis, the molecular mechanisms involved in diabetes‐associated CAVD still need to be uncovered. In this context, we have developed a 3D construct based on gelatin populated with human valvular endothelial cells (VEC) and valvular interstitial cells (VIC) and evaluated the effect of high glucose (HG) concentration on osteogenic molecules expression and on calcification mechanisms. First, we characterized the 3D model and assessed VIC remodelling properties at different time‐points. Then, we exposed it to normal glucose (NG) or high glucose (HG) for 7, 14 and 21 days after which the cells were isolated, separated and investigated individually. Our results showed that encapsulated VIC actively remodel the hydrogel, as demonstrated by an increased expression of extracellular matrix (ECM) proteins and matrix metalloproteinases (MMPs). Moreover, exposure of the construct to HG triggered bone morphogenetic protein (BMP) and TGF‐β signalling pathways, up‐regulating expression of osteogenic molecules—BMP‐2/‐4, osteocalcin, osteopontin, SMADs and Runt‐related transcription factor (Runx‐2)—and increased calcium deposits in an osteogenic environment. These findings underline the potential of the developed 3D model as a suitable system to investigate the mechanisms of human CAVD and may help to better understand the calcification mechanisms in CAVD associated to diabetes.
Coronary atherosclerosis complicated by plaque disruption and thrombosis is a critical event in myocardial infarction and stroke, the major causes of cardiovascular death. In atherogenesis, macrophages (MAC) and smooth muscle cells (SMC) are key actors; they synthesize matrix components and numerous factors involved in the process. Here, we design experiments to investigate whether SMC-MAC communication induces changes in ECM protein composition and/or neo-angiogenesis. Cell to cell communication was achieved using trans-well chambers, where SMCs were grown in the upper chamber and differentiated MAC in the bottom chamber for 24 or 72h. We found that cross-talk between MAC and SMC during co-culture: (i) significantly decreased the expression of ECM proteins (collagen I, III, elastin) in SMC; (ii) increased the expression and activity of metalloprotease MMP-9 and expression of collagenase MMP-1, in both MAC and SMC; (iii) augmented the secretion of soluble VEGF in the conditioned media of cell co-culture and VEGF gene expression in both cell types, compared with control cells. Moreover, the conditioned media collected from MAC-SMC co-culture promoted endothelial cell tube formation in Matrigel, signifying an increased angiogenic effect. In addition, the MAC-SMC communication led to an increase in inflammatory IL-1β and TLR-2, which could be responsible for cellular signaling. In conclusion, MAC-SMC communication affects factors and molecules that could alter ECM composition and neo-angiogenesis, features that could directly dictate the progression of atheroma towards the vulnerable plaque. Targeting the MAC-SMC cross-talk may represent a novel therapeutic strategy to slow-down or retard the plaque progression.
Neutrophils have been classically viewed as a homogenous population. Recently, neutrophils were phenotypically classified into pro-inflammatory N1 and anti-inflammatory N2 sub-populations, but the functional differences between the two subtypes are not completely understood. We aimed to investigate the phenotypic and functional differences between N1 and N2 neutrophils, and to identify the potential contribution of the S100A9 alarmin in neutrophil polarization. We describe distinct transcriptomic profiles and functional differences between N1 and N2 neutrophils. Compared to N2, the N1 neutrophils exhibited: i) higher levels of ROS and oxidative burst, ii) increased activity of MPO and MMP-9, and iii) enhanced chemotactic response. N1 neutrophils were also characterized by elevated expression of NADPH oxidase subunits, as well as activation of the signaling molecules ERK and the p65 subunit of NF-kB. Moreover, we found that the S100A9 alarmin promotes the chemotactic and enzymatic activity of N1 neutrophils. S100A9 inhibition with a specific small-molecule blocker, reduced CCL2, CCL3 and CCL5 chemokine expression and decreased MPO and MMP-9 activity, by interfering with the NF-kB signaling pathway. Together, these findings reveal that N1 neutrophils are pro-inflammatory effectors of the innate immune response. Pharmacological blockade of S100A9 dampens the function of the pro-inflammatory N1 phenotype, promoting the alarmin as a novel target for therapeutic intervention in inflammatory diseases.
Diabetes contributes directly to the development of cardiovascular aortic valve disease. There is currently no drug therapy available for a dysfunctional valve and this urges the need for additional research to identify distinctive mechanisms of cardiovascular aortic valve disease evolution. The aim of this study was to evaluate changes of valvular aortic lesions induced in a hyperlipemic ApoE−/− mouse model by early type 1 diabetes onset (at 4 and 7 days after streptozotocin induction). The haemodynamic valve parameters were evaluated by echography and blood samples and aortic valves were collected. Plasma parameters were measured, and inflammatory, remodelling and osteogenic markers were evaluated in the aortic valves. Next, correlations between all parameters were determined. The results showed early aortic valve dysfunction detected by echography after 1 week of diabetes; lesions were found in the aortic root. Moreover, increased expression of cell adhesion molecules, extracellular matrix remodelling and osteogenic markers were detected in hyperlipemic ApoE−/− diabetic mice. Significant correlations were found between tissue valve biomarkers and plasmatic and haemodynamic parameters. Our study may help to understand the mechanisms of aortic valve disease in the diabetic milieu in order to discover and validate new biomarkers of cardiovascular aortic valve disease in diabetes and reveal new possible targets for nanobiotherapies.
Calcific aortic valve disease (CAVD), a degenerative disease characterized by inflammation, fibrosis and calcification, is accelerated in diabetes. Hyperglycemia contributes to this process by mechanisms that still need to be uncovered. We have recently developed a 3D model of the human aortic valve based on gelatin methacrylate and revealed that high glucose (HG) induced osteogenic molecules and increased calcium deposits in a pro-osteogenic environment. To further understand the events leading to calcification in diabetic conditions in CAVD, we analyzed here the inflammatory and remodeling mechanisms induced by HG in our 3D model. We exposed valvular endothelial cells (VEC) and interstitial cells (VIC) to normal glucose (NG) or HG for 7 and 14 days, then we isolated and separated the cells by anti-CD31 immunomagnetic beads. The changes induced by HG in the 3D model were investigated by real-time polymerase chain reaction (RT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence. Our results showed that HG induced expression of different cytokines, cell adhesion molecules and matrix metalloproteinases in VEC and VIC. In addition, protein kinase C was increased in VEC and VIC, indicating molecular mechanisms associated with HG induced inflammation and remodeling in both valvular cells. These findings may indicate new biomarkers and targets for therapy in diabetes associated with CAVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.