There is growing interest in relating taste perception to diet and healthy aging. However, there is still limited information on the influence of age, sex and genetics on taste acuity as well as on the relationship between taste perception and taste preferences. We have analysed the influence of age on the intensity rating of the five basic tastes: sweet, salty, bitter, sour and umami (separately and jointly in a “total taste score”) and their modulation by sex and genetics in a relatively healthy population (men and women) aged 18–80 years (n = 1020 Caucasian European participants). Taste perception was determined by challenging subjects with solutions of the five basic tastes using standard prototypical tastants (6-n-propylthiouracil (PROP), NaCl, sucrose, monopotassium glutamate and citric acid) at 5 increasing concentrations (I to V). We also measured taste preferences and determined the polymorphisms of the genes taste 2 receptor member 38 (TAS2R38), taste 1 receptor member 2 (TAS2R38) and sodium channel epithelial 1 beta subunit (SCNN1B), as TAS2R38-rs713598, TAS1R2-rs35874116 and SCNN1B-rs239345 respectively. We found a statistically significant decrease in taste perception (“total taste score”) with increasing age for all the concentrations analysed. This association was stronger for the higher concentrations (p = 0.028; p = 0.012; p = 0.005; p = 4.20 × 10−5 and p = 1.48 × 10−7, for I to V in the multivariable-adjusted models). When we analysed taste qualities (using concentration V), the intensity rating of all the 5 tastes was diminished with age (p < 0.05 for all). This inverse association differed depending on the test quality, being higher for bitter (PROP) and sour. Women perceived taste significantly more intense than men (p = 1.4 × 10−8 for total taste score). However, there were differences depending on the taste, umami being the lowest (p = 0.069). There was a complex association between the ability to perceive a taste and the preference for the same. Significant associations were, nevertheless, found between a higher perception of sour taste and a higher preference for it in women. In contrast, the higher perception of sweet was significantly associated with a higher preference for bitter in both, men and women. The TAS2R38-rs713598 was strongly associated with bitter (PROP) taste (p = 1.38 × 10−50), having a significant interaction with sex (p = 0.030). The TAS1R2-rs35874116 was not significantly associated with sweet, whereas the SCNN1B-rs239345 was associated (p = 0.040) with salty taste. In conclusion, the inverse association between age and perceived taste intensity as well as the additional influence of sex and some genetic polymorphisms give rise to large inter-individual differences in taste perception and taste preferences that should be taken into account in future studies and for applications in precision nutrition for healthy aging.
Background The Mediterranean diet is a well-recognized healthy diet that has shown to induce positive changes in gut microbiota. Lifestyle changes such as diet along with physical activity could aid in weight loss and improve cardiovascular risk factors. Objectives To investigate the effect of an intensive lifestyle weight loss intervention on gut microbiota. Methods This is a substudy of the PREDIMED-Plus (Prevención con Dieta Mediterránea-Plus), a randomized controlled trial conducted in overweight/obese men and women (aged 55–75 y) with metabolic syndrome. The intervention group (IG) underwent an intensive weight loss lifestyle intervention based on an energy-restricted Mediterranean diet (MedDiet) and physical activity promotion, and the control group (CG) underwent a non-energy-restricted MedDiet for 1 y. Anthropometric, biochemical, and gut microbial 16S rRNA sequencing data were analyzed at baseline (n = 362) and 1-y follow-up (n = 343). Results IG participants had a weight loss of 4.2 (IQR, –6.8, –2.5) kg compared with 0.2 (IQR, –2.1, 1.4) kg in the CG (P < 0.001). Reductions in BMI, fasting glucose, glycated hemoglobin, and triglycerides and an increase in HDL cholesterol were greater in IG than in CG participants (P < 0.05). We observed a decrease in Butyricicoccus, Haemophilus, Ruminiclostridium 5, and Eubacterium hallii in the IG compared with the CG. Many genera shifted in the same direction within both intervention groups, indicating an overall effect of the MedDiet. Decreases in Haemophilus, Coprococcus 3, and few other genera were associated with a decrease in adiposity parameters in both intervention groups. Changes in Lachnospiraceae NK4A136 were positively associated with changes in MedDiet adherence. Conclusions Weight loss induced by an energy-restricted MedDiet and physical activity induce changes in gut microbiota. The role of MedDiet-induced changes on the host might be via short-chain fatty acid producing bacteria, whereas with energy restriction, these changes might be modulated with other mechanisms, which need to be explored in future studies. This trial was registered at http://www.isrctn.com/ISRCTN89898870 as ISRCT 89898870.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.