Introduction: Trichomoniasis is a worldwide sexually transmitted disease caused by Trichomonas vaginalis. It inflicts severe complications to the human genitourinary system. The devastating negative effects and the emergence of resistance to common medication impose the search for safer and effective alternatives. This research aimed to investigate the effect of the Allium sativum, Nigella sativa crude extracts (NsCE) and the combination between their most effective doses with metronidazole. Methodology: Vaginal swabs were obtained from symptomatic patients, and cultured on Diamond's medium. Assessment of various concentrations of these herbs at different follow-up periods was done by counting the number of dead T. vaginalis trophozoites using the hemocytometer and trypan blue staining. Transmission electron microscope study was done. Results: NsCE 9 mg/mL yielded the highest lethal effect on T. vaginalis trophozoites after 72 hours, compared with metronidazole. Combination of NsCE 9 mg/mL and metronidazole 50 µg/mL gave the best result. Additionally, Tomex90 µg/mL, represents a tolerable effect after 72 hours, but metronidazole 100 µg/mL still has higher effect. These results were confirmed by the ultrastructural changes observed in T. vaginalis trophozoites, signifying severe damage of nucleus and cytoplasm with large vacuolization and cell membrane defects. Conclusions: NsCE is a promising anti-Trichomonas especially its combination with metronidazole which showed a high synergistic effect.
Trichinellosis is a serious foodborne zoonosis. It poses a serious risk to public health worldwide. Early serological diagnosis of trichinellosis is influenced by an immunological ‘silent’ phase following infection. This highlights the necessity for developing sensitive diagnostic approaches to be employed when antibodies cannot be detected. In this work, the validity of traditional ELISA, Nano-ELISA and real time polymerase chain reaction (PCR) were evaluated in early diagnosis of Trichinella spiralis. Swiss albino mice were orally infected with 100 and 300 muscle larvae/mouse. Mice were sacrificed 4, 6, 8, 10, 15, and 28 days post-infection (dpi). Blood samples were tested for circulating antigen by traditional ELISA and Nano-ELISA using anti-rabbit polyclonal IgG conjugated with AgNPs and for Rep gene by SYBR green real-time PCR. Rep gene detection by SYBR green real-time PCR could detect T. spiralis with 100% sensitivity in the mild infection group at 8 dpi, while in the severe infection group it reached 100% sensitivity at 4 dpi. Nano-ELISA could detect T. spiralis circulating antigen from 4 dpi in both mild and severe infection and reached 100% sensitivity at 8 dpi and 6 dpi in mild and severe infection, respectively. However, traditional ELISA could detect T. spiralis circulating antigen from 6 dpi and reached maximum sensitivity at 15 dpi in the mild infection group, while in the severe infection group detection began at 4 dpi and reached 100% sensitivity at 8 dpi. Nano-ELISA and real time PCR, using Rep gene, are useful tools for the detection of early T. spiralis infection even in its mild infection state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.