Ecological concerns have recently led to the increasing trend to upgrade carbon contained in waste streams into valuable chemicals. One of these components is acetate. Its microbial upgrading is possible in various species, with Escherichia coli being the best-studied. Several chemicals derived from acetate have already been successfully produced in E. coli on a laboratory scale, including acetone, itaconic acid, mevalonate, and tyrosine. As acetate is a carbon source with a low energy content compared to glucose or glycerol, energy- and redox-balancing plays an important role in acetate-based growth and production. In addition to the energetic challenges, acetate has an inhibitory effect on microorganisms, reducing growth rates, and limiting product concentrations. Moreover, extensive metabolic engineering is necessary to obtain a broad range of acetate-based products. In this review, we illustrate some of the necessary energetic considerations to establish robust production processes by presenting calculations of maximum theoretical product and carbon yields. Moreover, different strategies to deal with energetic and metabolic challenges are presented. Finally, we summarize ways to alleviate acetate toxicity and give an overview of process engineering measures that enable sustainable acetate-based production of value-added chemicals.
Background The alcohol 2,3-butanediol (2,3-BDO) is an important chemical and an Escherichia coli producer strain was recently engineered for bio-based production of 2,3-BDO. However, further improvements are required for realistic applications. Results Here we report that enforced ATP wasting, implemented by overexpressing the genes of the ATP-hydrolyzing F1-part of the ATPase, leads to significant increases of yield and especially of productivity of 2,3-BDO synthesis in an E. coli producer strain under various cultivation conditions. We studied aerobic and microaerobic conditions as well as growth-coupled and growth-decoupled production scenarios. In all these cases, the specific substrate uptake and 2,3-BDO synthesis rate (up to sixfold and tenfold higher, respectively) were markedly improved in the ATPase strain compared to a control strain. However, aerobic conditions generally enable higher productivities only with reduced 2,3-BDO yields while high product yields under microaerobic conditions are accompanied with low productivities. Based on these findings we finally designed and validated a three-stage process for optimal conversion of glucose to 2,3-BDO, which enables a high productivity in combination with relatively high yield. The ATPase strain showed again superior performance and finished the process twice as fast as the control strain and with higher 2,3-BDO yield. Conclusions Our results demonstrate the high potential of enforced ATP wasting as a generic metabolic engineering strategy and we expect more applications to come in the future.
Recombinant production of pharmaceutical proteins like antigen binding fragments (Fabs) in the commonly-used production host Escherichia coli presents several challenges. The predominantly-used plasmid-based expression systems exhibit the drawback of either excessive plasmid amplification or plasmid loss over prolonged cultivations. To improve production, efforts are made to establish plasmid-free expression, ensuring more stable process conditions. Another strategy to stabilize production processes is lactose induction, leading to increased soluble product formation and cell fitness, as shown in several studies performed with plasmid-based expression systems. Within this study we wanted to investigate lactose induction for a strain with a genome-integrated gene of interest for the first time. We found unusually high specific lactose uptake rates, which we could attribute to the low levels of lac-repressor protein that is usually encoded not only on the genome but additionally on pET plasmids. We further show that these unusually high lactose uptake rates are toxic to the cells, leading to increased cell leakiness and lysis. Finally, we demonstrate that in contrast to plasmid-based T7 expression systems, IPTG induction is beneficial for genome-integrated T7 expression systems concerning cell fitness and productivity.
Background Acetate is an abundant carbon source and its use as an alternative feedstock has great potential for the production of fuel and platform chemicals. Acetoin and 2,3-butanediol represent two of these potential platform chemicals. Results The aim of this study was to produce 2,3-butanediol and acetoin from acetate in Escherichia coli W. The key strategies to achieve this goal were: strain engineering, in detail the deletion of mixed-acid fermentation pathways E. coli W ΔldhA ΔadhE Δpta ΔfrdA 445_Ediss and the development of a new defined medium containing five amino acids and seven vitamins. Stepwise reduction of the media additives further revealed that diol production from acetate is mediated by the availability of aspartate. Other amino acids or TCA cycle intermediates did not enable growth on acetate. Cultivation under controlled conditions in batch and pulsed fed-batch experiments showed that aspartate was consumed before acetate, indicating that co-utilization is not a prerequisite for diol production. The addition of aspartate gave cultures a start-kick and was not required for feeding. Pulsed fed-batches resulted in the production of 1.43 g l−1 from aspartate and acetate and 1.16 g l−1 diols (2,3-butanediol and acetoin) from acetate alone. The yield reached 0.09 g diols per g acetate, which accounts for 26% of the theoretical maximum. Conclusion This study for the first time showed acetoin and 2,3-butanediol production from acetate as well as the use of chemically defined medium for product formation from acetate in E. coli. Hereby, we provide a solid base for process intensification and the investigation of other potential products.
Background Acetate is an abundant carbon source and its use as an alternative feedstock has great potential for the production of fuel and platform chemicals. Acetoin and 2,3-butanediol represent two of these potential platform chemicals. Results The aim of this study was to produce 2,3-butanediol and acetoin from acetate in Escherichia coli W. The key strategies to achieve this goal were: strain engineering, in detail the deletion of mixed acid fermentation pathways E. coli W ΔldhA ΔadhE Δpta ΔfrdA 445_Ediss and the development of a new defined medium containing five amino acids and seven vitamins. Stepwise reduction of the media additives further revealed that diol production from acetate is mediated by the availability of aspartate. Other amino acids or TCA cycle intermediates did not enable growth on acetate. Cultivation under controlled conditions in batch and pulsed fed-batch experiments showed that aspartate was consumed before acetate, indicating that co-utilization is not a prerequisite for diol production. The addition of aspartate gave cultures a start-kick and was not required for feeding. Pulsed fed-batches resulted in the production of 1.43 g l-1 from aspartate and acetate and 1.16 g l-1 diols (2,3-butanediol and acetoin) from acetate alone. The yield reached 0.09 g diols per g acetate, which accounts for 26 % of the theoretical maximum.Conclusion This study for the first time showed acetoin and 2,3-butanediol production from acetate as well as the use of chemically defined medium for product formation from acetate in E. coli. Hereby, we provide a solid base for process intensification and the investigation of other potential products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.